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Chapter 3

LUMPED-PARAMETER

ELECTROMECHANICS

3.0 INTRODUCTION

Having reviewed the derivations of lumped electric circuit elements and
rigid-body mechanical elements and generalized these concepts to allow
inclusion of electromechanical coupling, we are now prepared to study some
of the consequences of this coupling.

In the analysis of lumped-parameter electromechanical systems experience
has shown that sufficient accuracy is obtained in most cases by making a
lossless model of the coupling system. Thus energy methods are used to
provide simple and expeditious techniques for studying the coupling process.

After introducing the method of calculating the energy stored in an
electromechanical coupling field, we present energy methods for obtaining
forces of electric origin. We shall then study the energy conversion process in
coupling systems and finally discuss the formalism of writing equations of
motion for complete electromechanical systems. The techniques for analyzing
the dynamic behavior of lumped-parameter electromechanical systems are
introduced and illustrated in Chapter 5.

3.1 ELECTROMECHANICAL COUPLING

There are four technically important forces of electric origin.

1. The force resulting from an electric field acting on free charge.
2. The force resulting from an electric field acting on polarizable material.
3. The force resulting from a magnetic field acting on a moving free

charge (a current).
4. The force resulting from a magnetic field acting on magnetizable

material.
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Fig. 3.1.1 (a) A magnetic field electromechanical system; (b) its representation in terms
of terminal pairs. Note that the coupling network does not include mechanical energy
storages (M) or electrically dissipative elements (R).

Because of the restriction of our treatment to quasi-static systems, the
fields that give rise to forces in a particular element are electric or magnetic,
but not both. Thus we can consider separately the forces due to electric
fields and the forces due to magnetic fields.

To illustrate how the coupling can be taken into account suppose the
problem to be considered is the magnetic field system shown in Fig. 3.1.1.
The electromechanical coupling occurs between one electrical terminal
pair with the variables i and A and one mechanical terminal pair composed
of the node x acted on by the electrical forcefe. It has been demonstrated in
Sections 2.1.1 and 2.1.2 that the electrical terminal variables are related by an
electrical terminal relation expressible in the form

A = 2(i, x). (3.1.1)

This relation tells us the value of A, given the values of i and x. We can say,
given the state (i, x) of the magnetic field system enclosed in the box, that the
value of A is known.

We now make a crucial assumption, motivated by the form of the electrical
equation: given the current i and position x, the force of electric origin has a
certain single value

---pll~-11__·

fe =f"(i, x); (3.1.2)
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that is, the forcefe exerted by the system in the box on the mechanical node
is a function of the state (i, x). This is reasonable if the box includes only
those elements that store energy in the magnetic field. Hence all purely
electrical elements (inductors that do not involve x, capacitors, and resistors)
and purely mechanical elements (all masses, springs, and dampers) are
connected to the terminals externally.

Note thatfe is defined as the force of electrical origin applied to the
mechanical node in a direction that tends to increase the relative displacement
x. Because (3.1.1) can be solved for i to yield

i= i(0, x), (3.1.3)

the forcef 6 can also be written as

fe =f'(2, x). (3.1.4)

It is well to remember that the functions of (3.1.2) and (3.1.4) are different
because the variables are different; however, for a particular set of i, A, x
the forcefe will have the same numerical value regardless of the equation used.

In a similar way the mechanical force of electric origin for an electric field
system (see Fig. 3.1.2) can be written as

fe fe(q, x) (3.1.5)
or

f" =fe(v, X). (3.1.6)
q -------------- 1
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Fig. 3.1.2 (a) An electric field electromechanical system; (b) its representation in terms
of terminal pairs. Note that the coupling network does not include mechanical energy
storage elements (M) or electrically dissipative elements (G).
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Electromechanical Coupling

When the mechanical motion is rotational, the same ideas apply. We
replace force f by torque T' and displacement x by angular displacement 0.

Although the systems of Figs. 3.1.1 and 3.1.2 have only one electrical and
one mechanical terminal pair, the discussion can be generalized to any
arbitrary number of terminal pairs. For instance, if an electric field system
has N electrical terminal pairs and M mechanical terminal pairs for which the
terminal relations are specified by (2.1.36), then (3.1.6) is generalized to

fie =fie(V1, i21(v *, VN; X1, X 2 .... XM),
(3.1.7)i= 1,2, .. ,M,

where the subscript i denotes the mechanical terminal pair at which f8 is
applied to the external system by the coupling field. The other forms off can
be generalized in the same way.

The next question to be considered is how to determine the forcef" for a
particular system. One method is to solve the field problem, find force
densities, and then perform a volume integration to find the total force. This
process, described in Chapter 8, supports our assumption that f has the
form of (3.1.2) and (3.1.5). It is often impractical, however, to solve the
field problem. A second method of determining f is experimental; that is,
if the device exists, we can measuref" as a function of the variables (i and x,
2 and x, v and x, or q and x) on which it depends, plot the results, and fit
an analytical curve to obtain a function in closed form. This method also
has obvious disadvantages.

It is shown in the next section that when the electrical terminal relations
are known and the coupling system can be represented as lossless the forcef"
can be found analytically. Because electrical lumped parameters are usually
easier to calculate and/or measure than mechanical forces, this often provides
the most convenient way of determining the mechanical forces of electric
origin fe.

3.1.1 Energy Considerations

It will be useful to study some of the general properties of lossless electric
and magnetic field energy storages that are functions of geometry. In these
considerations we use the conservation of energy (first law of thermodynamics)
repeatedly.

As an example, consider again the magnetic field system of Fig. 3.1.1.
The system symbolically enclosed in the box contains only a magnetic field
whose value and therefore energy storage is affected by both electrical and
mechanical variables. This coupling network is assumed to be lossless, which
means that energy put into the system by the electrical and mechanical
terminal pairs is stored in the magnetic field and can be recovered completely

1114^1~111111111~.~1
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through the terminals. Such a system is often called conservative. We use
lossless and conservative as synonyms.

When the total energy stored in the magnetic field is denoted by W,, the
conservation of power for the system can be written as

dWm dA dx
dW i d- _ fe dx (3.1.8)
dt dt dt

The term dW,m/dt is the time rate of increase in magnetic energy stored, the
term i(d2/dt) is the power input at the electrical terminals, and [--f'(dx/dt)] is
the power input at the mechanical terminals. The minus sign on the me-
chanical power results becausef e is defined as acting on (into) the mechanical
node.

Multiplication of (3.1.8) by dt yields an equation for conservation of
energy

dW, = i dA -fe dx. (3.1.9)

From (3.1.3) and (3.1.4), it is evident that only two of the four variables
(i, A,f •f, x) can be set independently without violating the internal physics
of the system. There are further restrictions that the external mechanical
and electrical systems impose on the terminal pairs of the box (mechanical
and electrical circuit equations). If, however, we think of the coupling net-
work as being temporarily disconnected from the electrical and mechanical
circuits, we can choose two independent variables, say (A, x), which through
the terminal relations stipulate i andfe. Our choice of A and x is motivated by
(3.1.9), which shows how incremental changes in these variables are related
to incremental changes in the magnetic stored energy Wi. The evaluation of
the change in W, when A and/or x are varied by finite amounts requires an
integration of (3.1.9). This is a line integration through variable space. For
the example being considered (Fig. 3.1.1) there are two independent variables
(A, x); thus variable space is two-dimensional, as illustrated in Fig. 3.1.3.
Independence of variables is indicated by orthogonality of axes. Suppose it is

Fig. 3.1.3 Two-dimensional variable space.
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desired to find the change in stored energy when the independent variables are
changed from the point (2a, x,) to the point (2,, x,). To evaluate a line integral
we must specify the path of integration; an infinite number of possible paths
exist between the two points. A property of a conservative system, however,
is that its stored energy is a function of its state (i.e., of the particular values
of Aand x that exist) and does not depend on what succession of variable
values or what path through variable space was used to reach that state. A
consequence of this property is that if the system variables are made to change
along path A from (ZA,xa) to (A,, x,) in Fig. 3.1.3 and then along path B back
to (A2,xa), the net change in stored energy W, during the process is zero.

In a conservative system the change in stored energy between any two
points in variable space is independent of the path of integration. Thus we
can select the path that makes the integration easiest. As an example,
consider the evaluation of the change in energy between points (A, xa) and
(A, xb) in Fig. 3.1.3. Along segment 1-2, di = 0; and along segment 2-3,
dx = 0. Thus, using path C, integration of (3.1.9) takes on the particular form

W,(Ab, xb) - W.(Aa,, xa) = -- j ft (A,, x) dx + f i(A,x,)dA. (3.1.10)

If, alternatively, we wish to evaluate the integral along path D in Fig. 3.1.3,
the result is

W.(2b, Xb) - Wm(Aa2, Xa) =--- i(A, X,) d2 -J f.(2Ab, x) dx. (3.1.11)

The energy difference as evaluated by (3.1.10) and (3.1.11) must, of course,
be the same.

The integrations given in (3.1.10) and (3.1.11) have a simple physical
significance. The integrations of (3.1.10) represent putting energy into the
network in two successive steps. First we put the system together mechanically
(integrate on x) while keeping Aconstant. In general, this operation requires
doing work against the force fe, and this is the contribution of the first
integral in (3.1.10) to the energy stored in the coupling network. Then we put
energy in through the electrical terminals, keeping the geometry (x) fixed.
The second integral is the energy supplied by an electrical source which
provides the excitation A. In (3.1.11) these successive steps are reversed in
order.

We always define electrical terminal pairs that account for the excitation
of all electric or magnetic fields in the system. Then, when the electrical ter-
minal variables are zero (A, = 0 in the present example), we can say that
there is no force of electrical origin. The difference between (3.1.10) and
(3.1.11) with •,= 0 is crucial, for in the first the contribution off' to the
integration is zero[f*(0, x) = 0], whereas in the second we must knowf' to

3.1.1
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carry out the integration; that is, by first integrating on the mechanical
variables and then on the electrical variables we can determine W, from the
electrical terminal relations. Physically, this simply means that if we put the
system together mechanically when no force is required we can account for
all the energy stored by putting it in through the electrical terminal pairs.

An example of a system in which there will be energy stored in the network
and a force of electrical origin even with no external electrical excitation is the
permanent magnet device of Example 2.1.3. In that example, however, it
was shown that we could replace the permanent magnet with an externally
excited terminal pair; hence this case imposes no restriction on our develop-
ment.

We can also study electric field systems using the conservation of energy.
For the example in Fig. 3.1.2, with the electrical energy stored in the system
denoted by We, the conservation of power can be written as

dW, dq dz
-= v -- fq dx -(3.1.12)

dt dt dt

and multiplication by dt yields the conservation of energy

dW. = v dq - f dx. (3.1.13)

A comparison of (3.1.9) and (3.1.13) shows that the description of lossless
magnetic field systems can be used directly for electric field systems by
replacing W,. by We, i by v, and A by q. All the mathematical processes are
exactly the same.

These examples are systems with one electrical and one mechanical
terminal pair. The results can be extended to systems with any arbitrary
number of terminal pairs; for example, consider an electric field system with
N electrical terminal pairs and M rotational mechanical terminal pairs. Then
the conservation of energy can be written as

dW "N dq. m' dO,
_ = -' T. - (3.1.14)

dt i=1 d i-i dt

where vi and q, are the voltage and charge associated with the ith electrical
terminal pair, T,' and O8 are the torque and angular displacement at the ith
mechanical terminal pair, and W, represents the total electric energy stored
in the system.

Multiplication of (3.1.14) by dt yields

N ai

dW, = 1 v, dq, - , T4 dOe. (3.1.15)
i=1 i=1

_~
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For this system there will be N electrical terminal relations of the general
form

vi = vi(ql, q 2 ., .. ,qN; 01, 02, ... OM); i = 1, 2, ... ,N (3.1.16)

and M mechanical terminal relations

T,* = Tje(qi, q2, - , qN; 01, 02,... , OM); i = 1, 2, ... ,M. (3.1.17)

As a result of the use of (3.1.16) and (3.1.17), (3.1.15) is expressed as a
function of (N + M) independent variables, the N charges and M angles.
Thus the stored energy can be written in general as

W, = W.(ql,q 2 ... , qN; 01, 0 ... M) (3.1.18)

and We can be obtained by integrating (3.1.15) along any convenient path
through the (N + M)-dimensional variable space.

Further generalization of these ideas to magnetic field systems and transla-
tional mechanical terminal pairs is straightforward and is not carried out here
(see Table 3.1). Example 3.1.1 illustrates the line integration that has been
described.

3.1.2 Mechanical Forces of Electric Origin

Now that we have specified the formalism by which we calculate stored
energy, we shall derive mechanical forces of electric origin by using the
conservation of energy.

3.1.2a Force-Energy Relations

To start with a simple example, we consider again the magnetic field system
of Fig. 3.1.1 which was described mathematically by (3.1.3), (3.1.4), and
(3.1.9). From these expressions it is clear that the magnetic stored energy
W, is expressible as a function of the two independent variables A and x.

W. = Wm(, x). (3.1.19)

We shall find that if the system is to be conservative the energy must be a
single-valued function of the independent variables (), x) with finite second
partial derivatives. Making this restriction on W, we can formally take the
total differential of (3.1.19) to obtain

dWm = di + d, (3.1.20)
aA ax

where the partial derivatives are taken by using 2 and x as independent
variables. When (3.1.20) is subtracted from (3.1.9), the result is

0 = i - )dA - f + dx. (3.1.21)

oA (f ax] )

_I



Table 3.1 Energy Relations for an Electromechanical Coupling Network with N Electrical

and M Mechanical Terminal Pairs*

Magnetic Field Systems Electric Field Systems

Conservation of Energy

N i1 N 3
dWm = J i dA, - Z fj e d-z (a) dWe = vj dq, - J fe d-x (b)

i=1 i=1 j=1 3=1

N M N M
dWm = I A, di, + I fje dxj (c) dWe = I qj4dvj + I fje d-x (d)

j=1 j=1 j=1 i=1

Forces of Electric Origin, j = 1 ... , M

e aWn(A.. AN; xl ...... XM) eWe(q .... qN; x 1. X) (f)x1
=ax (e) f - xj(f)

= OW(i ... iN; x1.. XM) (g) e = OW•(v ... VN; X1, hx)M)
'fexj (= (h)

Relation of Energy to Coenergy

N N

W. + W. =- A,i,i (i) W e + W e' = vq (j)
J=1 J=1

Energy and Coenergy from Electrical Terminal Relations

Wm= • i(a 1 ... . . -. ,, 0....0;x....x) d, (k) We -j(ql qj- , q,0 ... 0;x ... )dq (1)

W. P j(i ..... . i, 1, A0 ... 0; 10 .. x1 ) d. (i) We = I q(t 1 .... , I, O,0... ,O x 1 ..... x 1 ) du. (n)

j= j=1 0J

* The mechanical variables A and xj can be regarded as thejth force and displacement or thejth torque Tj and angular displacement 04.
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The variables 2 and x are independent. Thus dA and dx can have arbitrary
values, and the equation must be satisfied by requiring the coefficients of
dA and dx to be zero:

i =w,,(2, x)= , x) (3.1.22)

fe x) (3.1.23)
ax

If the stored energy is known, the electrical and mechanical terminal relations
can now be calculated.

Equations 3.1.22 and 3.1.23 can be generalized to describe a system with
arbitrary numbers of electrical and mechanical terminal pairs (see Table 3.1).
To illustrate this generalization we consider again the electric field system of
Nelectrical terminal pairs and Mrotational terminal pairs which was described
mathematically by (3.1.14) to (3.1.18). We now take the total differential of
(3.1.18),

" aw + M aw,
dW, = _- dq, + _1 dO,. (3.1.24)i=1 aq, i=1 a

Subtraction of (3.1.24) from (3.1.15) yields

0 =1 v•-- dq, -1 T e + -] dO,. (3.1.25)

All N of the q,'s and M of the B,'s are independent. Thus each coefficient of
dq, and dOe must be equal to zero:

v = i = 1,2,..., N, (3.1.26)
aqi

Tie= o, i =1, 2,...M. (3.1.27)

These expressions are generalizations of (3.1.22) and (3.1.23) to describe
systems with arbitrary numbers of terminal pairs. They indicate that when
the stored energy W, is known as a function of the independent variables
all terminal relations can be calculated (see Table 3.1).

It is usually easier in practice to determine the electrical terminal relations
by calculation or measurement than it is to determine the mechanical terminal
relations or the stored energy. We have seen that the electrical terminal
relations are sufficient to evaluate the stored energy if we choose a path of
integration in variable space that keeps electrical excitations zero while
mechanical variables are brought to their final values. Once the stored
energy is known, the forcef e can be calculated as a derivative of the stored

·
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of a coupling system can be determined completely
if the electrical terminal relations are known and the
system is represented by a conservative model.

To illustrate these ideas consider the electric field
system of Fig. 3.1.2 for which the electrical ter-
minal relation is

X J
Fig. 3.1.4 Variable space v = v(q, x). (3.1.28)
for system of Fig. 3.1.2.

The path of integration in the q-x plane to be used
in evaluating stored energy W, is shown in Fig. 3.1.4. If we use (3.1.13),
the energy at point (q, x) is

W.(q, x) = - fe (0, x') dx' + v(q', x) dq'. (3.1.29)

In this expression and in Fig. 3.1.4 the primes denote running variables and
(q, x) represents the fixed end point of the line integration. The first term on
the right of (3.1.29) is zero because fe is the force of interaction between
charges and electric fields, and with no charge (q = 0) f" must be zero. Thus
(3.1.29) can be written for this particular path of integration in the simpler
form

W,(q, x) = fv(q', x) dq'. (3.1.30)

This result can be generalized in a straightforward way to magnetic field
coupling systems, rotational mechanical systems, and multiterminal-pair
systems. The generalized force and energy relations are summarized in Table
3.1. This table is intended to illustrate the generality and interrelations of the
equations. These general equations are not intended for use in the solution of
most problems. The concepts and techniques are simple enough that it is
good practice to start from the conservation of energy and derive the forces
in each problem. In this way we can be certain that fundamental physical
laws are satisfied.

Example 3.1.1. To illustrate the use of this technique consider again the electric field
system that was treated earlier in Example 2.1.5 and represented by Fig. 2.1.8. That figure
is reproduced here as Fig. 3.1.5 for convenience. The electrical terminal relations were
derived in Example 2.1.5 and are expressible in the forms

V1 = S 1(X, X)q1 + Sm(X1, XA)q2, (a)

V2 = Sm(,x, x2)q, + S2 (xl, X2)q2,
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Fig. 3.1.5. Multiply excited electric field system.

where we have solved (a) and (b) of Example 2.1.5 for v1 and vs, and therefore have

C 2
S CC 2 - C.2

SC,

c'.S c - c,;

C1, C2 , and C, are the functions of x1 and z2 given by (c), (d), and (e) of Example 2.1.5.
The system is first assembled mechanically with q1 and q2 zero, during which process no

energy is put into the system. Next, charges q, and q2 are brought to their final values with
x1 and x2 fixed. This step requires an integration along a path in the qr-qa plane. The path
chosen for this example is shown in Fig. 3.1.6. Along this path the running variables
are related by

, q;

thus the necessary integral takes the form

W(q.l, q2, XI,x 2 )= J 1v q', q', x1 , x2x dq2 ;
Path of

intergration

+ V2 q', . q', xz, ldqj . (c) Fig. 3.1.6 Illustrating a path)\q /91 J for line integration in variable
Substitution of (a) and (b) into (c) and evaluation of space for Example 3.1.1.
the integral yields

W,(ql, q2 'X1, X2) = jS1(x1,x2 )qi2 + Sm(xl, x2 )qlq2 + $S2(X1 , x2)q22.

3.1.2
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From this expression we can now evaluate the mechanical forces of electric origin fl and
f2e (mechanical terminal relations); thus

8We 2 S1 aS as2fie(ql,q2,x1, x2) = - = --q1
2 

-- q1 q2 S - 1q2
2 

, (e)

w, 2as asa aass
f2e(q1 , q2, x1, x2) = = -q 2 91q2 a - q22 (f)

Because S1 , S2, and S, are known as functions ofzxand x2 for this example, the derivatives
in (e) and (f) can be calculated; this is straightforward differentiation, however, and is not
carried out here.

3.1.2b Force-Coenergy Relations

So far in the magnetic field examples the flux linkage Ahas been used as the
independent variable, with current i described by the terminal relation.
Similarly, in electric field examples charge q has been used as the independent
variable, with voltage v described by the terminal relation. These choices
were natural because of the form of the conservation of energy equations
(3.1.9) and (3.1.13). Note that in Example 3.1.1 we were required to find
vI(ql, q2) and v,(ql, q2). It would have been more convenient if we had been
able to use ql(v,, v2) and q2(vI, v2 ), for this is the form these equations took in
Example 2.1.5. We consider next how this can be done.

It should be possible to analyze systems using current as the independent
electrical variable for magnetic field systems and voltage as the independent
variable for electric field systems. In fact, it is often more convenient to make
this choice. Alternatively, it is sometimes convenient to use a hybrid set of
variables consisting of both currents and flux linkages in magnetic field
systems and voltages and charges in electric field systems. Such hybrid sets of
variables are used in Chapter 5.

To illustrate this change of independent variables consider once again the
magnetic field system described in Fig. 3.1.1, with the restriction that the
current i is to be used as the independent variable. The conservation of energy
as expressed by (3.1.9) is still a fundamental relation:

dWm = i dA - fe dx. (3.1.9)

The electrical terminal relation is (3.1.1),

A = 2(i, z), (3.1.1)

and the mechanical terminal relation is (3.1.2),

fe =fe(i, X). (3.1.2)

Equation 3.1.9 can be written in a form that involves di and dx by first
using the rule of differentiation,

idA = d(Ai) - Adi. (3.1.31)
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Then the energy equation (3.1.9) is

dW,' = Adi + f" dx, (3.1.32)
where

W, = Ai - W,,. (3.1.33)

The energy equation (3.1.32) now has the required form in which changes
in the function W, are accounted for by changes in the independent variables
(i, x). The function W'(i, x) is called the coenergy and is defined in terms of
the energy Wj,(i, x) and terminal relations A(i, x) by (3.1.33).*

Remember that (3.1.32) physically represents conservation of energy for
the coupling network. The form of this equation is similar to that of (3.1.9)
and our arguments now parallel those of Section 3.1.2a. Because W' =
WA.(i, x),

dW' = W di + W" dx. (3.1.34)
di az

We subtract (3.1.34) from (3.1.32) to obtain

0= - ) d f - dx. (3.1.35)
ai dx' ax

Because di and dx are independent (arbitrary),

A= ', (3.1.36)

f = aW"(i, x) (3.1.37)
ax

If the stored energy (hence coenergy) is known, the electrical and mechanical
terminal relations can be calculated. Comparison of (3.1.37) and (3.1.23)
shows the change in the form of the force expression when the electrical
variable chosen as independent is changed from 2 to i.

The result of (3.1.37) can be generalized to a system with any number of
terminal pairs in a straightforward manner (see Table 3.1). For a magnetic
field system with N electrical terminal pairs and M translational mechanical
terminal pairs the conservation of energy equation becomes

NM

dW, = , i, dij - , fj" dzj. (3.1.38)
1=1 j=1

We now use the generalization of (3.1.31),
N N N

Zij dA, = Xd(ijA) - A2, di1, (3.1.39)
=1 j=i1 I t

* This manipulation, which represents conservation of energy in terms of new independent
variables, is called a Legendre transformation in classical mechanics and thermodynamics.

· _____I
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to replace the first term on the right-hand side of (3.1.38). Rearranging terms,
we obtain

N M

dW~ = As di, + If," dx,, (3.1.40)
1=1 $=1

where
N

W,' = ji - W• (3.1.41)
j=1

and W,' is the coenergy. The independent variables are (iQ,i, .. . N;

x,, x,,.. . ,~Ux). We assume that the A's and W, in (3.1.41) are written in
terms of these variables, hence that W' is a function of these variables. Then

N aw' Maw'dW. = - di, + dx,, (3.1.42)
J=1 ai, -=1 ax,

and when we subtract (3.1.42) from (3.1.40) and require that the coefficient
of each di, and each dxj be zero

aw'
A i= ; j = 1, 2,. N, (3.1.43)ai1

f" = - ' ; j = 1, 2, ... , M. (3.1.44)
axj

This same process of generalization can be carried out for an electric field
system (see Table 3.1); for instance, for the system of N electrical terminal
pairs and M rotational mechanical terminal pairs for which the torque was
found in (3.1.27) the use of the voltage as the independent variable instead
of charge leads to the result

Te = awe'(V',V2, .... VN; 01, 02..... )M)aoi , (3.1.45)a0,
where

N

We' = ,v1 q - We. (3.1.46)
1=1

This expression is obtained by a straightforward process of exactly the same
form as that used for the general magnetic field system (3.1.38) to (3.1.44).

It is not necessary to find the coenergy by first determining the energy;
for example, we can integrate (3.1.32) to find W' just as we integrated
(3.1.9) to find W,. In general, we evaluate W, by selecting a path of integra-
tion through variable space for (3.1.40) that changes the xz's with all electrical
excitations zero and then changes electrical excitations with mechanical
displacements held fixed.

For a better understanding of the meaning of coenergy consider the
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Fig. 3.1.7 Paths of integration in variable space: (a) for evaluating coenergy; (b) for
evaluating energy.

simple electric field system presented earlier in Fig. 3.1.2. The coenergy is
evaluated by the integration of

dW' = q dv + f' dx. (3.1.47)

[This is the energy equation (3.1.13) with v dq = d(vq) - q dv and W' =
qv - W,.] We use the path of integration defined in Fig. 3.1.7a to reduce this
integration to

We' = q(v', x) dv'.

In the case of electrical linearity

and (3.1.48) becomes

It follows that

q(v, x) = C(x)v,

W, = ½Cv2.

(3.1.48)

(3.1.49)

(3.1.50)

(3.1.51)fe -aw(v, x) 2 dC
ax dx

r r

-- - --- --3 X

.. ........ 
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(a) (b)

Fig. 3.1.8 Illustration of energy and coenergy: (a)electrically linear system; (b) electrically
nonlinear system.

We can compare this result with what we find if we integrate (3.1.13)
along the path of Fig. 3.1.7b to find the energy

W~ = v(q', x) dq', (3.1.52)

which from (3.1.49) is
q2

W =(q,2) 2 ) (3.1.53)

Now, when we use (3.1.49) to eliminate q from this expression, we see that
the coenergy and energy are numerically equal. This is a consequence of the
electrical linearity, as may be seen by observing Fig. 3.1.8a, in which (3.1.48)
and (3.1.52) are the areas in the q'-v' plane indicated. (Remember that,
by definition, in our system with one electrical terminal pair W,' + W, = qv.)
When the areas are separated by a straight line (3.1.49), the integrals are
obviously equal. On the other hand, when the areas are not separated by a
straight line, the system is electrically nonlinear and energy and coenergy are
not equal. An example of electrical nonlinearity is shown in Fig. 3.1.8b.

Energy and coenergy have the same numerical values in an electrically
linear system. We have, however, consistently made use of the energy expressed
as a function of (q, x) or (A, x) and the coenergy expressed as a function of
(v, x) or (i, x). These functions are quite different in mathematical form, even
when the system is electrically linear [compare (3.1.50) and (3.1.53)].

A word of caution is called for at this point. A partial derivative is taken
with respect to one independent variable holding the other independent
variables fixed. In order for this process to be correct, it is easiest to perform
the differentiation when the function to be differentiated is written without
explicit dependence on dependent variables. To be more specific, consider

,X)
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the capacitance C(x) of plane parallel plates with area A and spacing x
(Fig. 3.1.2). Then

C(x) - A (3.1.54)

and (3.1.51) gives

f" - .A (3.1.55)
2x

2

The minus sign tells us that fO acts on the upper plate (node) in the (-x)
direction. This we expect, for positive charges on the top plate are attracted
by negative charges on the bottom plate. We can obtain the same result by
using the energy and the translational form of (3.1.27).

f = W(q, x) (3.1.56)
ax

From (3.1.53) and (3.1.54)

f" = (3.1.57)
2Ae

In view of (3.1.49) and (3.1.54) this result and (3.1.55) are identical. Suppose,
however, that we blindly apply (3.1.56) to the energy of (3.1.53) with q
replaced by Cv. The magnitude of the resulting force will be correct, but the
sign will be wrong. For electrically nonlinear systems the magnitude of the
force will also be wrong if the partial differentiation is not carried out
correctly.

The generalized force and coenergy equations are summarized in Table 3.1.
This table is intended to illustrate the generality of the equations and their
interrelations. The general equations are not recommended for use in solving
problems. It is better to rederive the equations in each case to make certain
that fundamental physical laws are satisfied. Equations (k) to (n) in Table
3.1 for evaluating energy and coenergy are written by using a path of integra-
tion that brings each electrical variable from zero to its final value in sequence
j = 1 toj = N.

3.1.2c Reciprocity

The mathematical description of a conservative electromechanical coupling
system must satisfy a reciprocity condition that is a generalization of the
reciprocity conventionally discussed in electric circuit theory.* To illustrate
reciprocity for a simple example, consider the magnetic field system of Fig.
3.1.1 for which the terminal relations are expressed as derivatives of stored

* E. A. Guillemin, Introductory Circuit Theory, Wiley, New York, 1953, pp. 148-150 and
429.

_____·
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energy in (3.1.22) and (3.1.23):

i W(aw , z)a , X) (3.1.22)

f" = w ) (3.1.23)
ax

We now differentiate (3.1.22) with respect to x and (3.1.23) with respect to L.
Then, because

aja. 8xMa2w, a2wa

the reciprocity relation results:

ai(, X) _ af(, x) (3.1.58)
ax N

The process used in obtaining the reciprocity condition (3,1.58) shows that
the condition is necessary for the system to be conservative. This same
condition can also be shown to be sufficient to ensure that the system is
conservative. The proof requires a straightforward but involved integration
and is not carried out here primarily because it is a standard inclusion in some
thermodynamics texts.*

The reciprocity condition of (3.1.58) can be generalized to describe a
conservative system with any number of terminal pairs. Consider again the
electric-field system with N electrical terminal pairs and M rotational me-
chanical terminal pairs whose terminal relations are described by (3.1.26)
and (3.1.27):

vi = (- ; i = 1, 2, . . . , N, (3.1.26)
aq,

T" = -W i = 1, 2 ... , M. (3.1.27)
ao,

When we take appropriate partial derivatives of these equations and recognize
that the order of differentiation is immaterial, we obtain the general reci-
procity conditions:

avi av,v- L i, j = 1, 2, . .. , N, (3.1.59)
aq, aq'

ao, ao,

. . . ., (3.1.61)av M= 1,2,..NMaoi aqj j = 1, 2. M.

See, for instance, W. P. Allis and M. A. Herlin, Thermodynamics and StatisticalMechanics,
McGraw-Hill, 1952, pp. 6-9.

_ ~_ ·
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Note that for an electrically linear system (3.1.59) reduces to Cij = Cji
which is the usual form of the reciprocity relation for linear capacitive
circuits.*

Although the reciprocity conditions must always be satisfied for a con-
servative system, they are not often used in the analysis and design of electro-
mechanical systems. Their primary usefulness is twofold. First, they provide
a rapid check on results to identify certain kinds of mathematical error; and,
second, they provide a mathematical framework for identifying the classes of
nonlinear functions with which we can approximate the terminal relations
of multiterminal-pair, electrically nonlinear, systems. If the reciprocity
conditions are not satisfied, the mathematical description will imply sources
and/or sinks of energy in the coupling field that can lead to nonphysical
results.

3.1.3 Energy Conversion

The fact that in lumped-parameter electromechanics we are dealing with
lossless coupling systems in which stored energy is a state function (single-
valued function of the independent variables) can be quite useful in assessing
energy conversion properties of electromechanical systems. This is especially
true of systems that operate cyclically. For any conservative coupling system
we can write the conservation of energy as

electrical energy] + [mechanical energy] change in (3.1.62)

input input [stored energyi

For a complete cycle of operation, that is, for a situation in which the
independent variables return to the values from which they started, the net
change in stored energy is zero. Thus for a cyclic process (3.1.62) becomesLnetelectrical] net mechanical]

energy input + energy input = 0. (3.1.63)

for one cycle for one cycle

We need to calculate only the electrical or mechanical energy input to find
the net conversion of energy between electrical and mechanical forms.

Example 3.1.2. The device shown schematically in Fig. 3.1.9 is used to illustrate the
energy conversion properties of a cyclically operating system.t It contains a cylindrical
stator of highly permeable magnetic material with polar projections on which coils are
wound. The two coils are connected in series in the polarity shown to form one electrical
terminal pair. This machine also contains a rotor, made of highly permeable magnetic

* Guillemin, loc. cit.
t For more detail on this type of machine (called a two-pole, single-phase, salient-pole
synchronous machine) see Section 4.2.

3.1.2
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ator

Fig. 3.1.9 A rotational magnetic field transducer.

material, which has the shape shown in end view in Fig. 3.1.9 and which can rotate about
the axis with the instantaneous angle 0.

It is determined experimentally that the machine is electrically linear and that the electrical
terminal relation can be approximated by the inductance

L = Lo + L2 sin 20, (a)

where L0 and L, are positive constants and L0 > L2.Note that this inductance is a maximum
at 0 = 7r/4 and 0 = 5 7r/ 4, as we expected, because the air gaps between rotor and stator
iron are smallest for these angles. Also, the inductance is a minimum for 0 = -fr/4 and
0 = 3r/4, in which case the air gaps are largest. In practice, the rotor and stator are shaped
so that the periodic variation of inductance with angle closely approaches the ideal of (a).

With the inductance thus specified, we can write the electrical terminal relation as

A= Li = (Lo + L2 sin 20)i. (b)

We can now use (b) to evaluate the magnetic coenergy by using (m)of Table 3.1,

W =-(L o + L2 sin 20)i2, (c)

and (g) in Table 3.1 to find the torque of electric origin,

aw'
T- i- = L 2i2 cos 20. (d)

We can now represent the electromechanical coupling symbolically, as in Fig. 3.1.10. The
box includes only the magnetic field energy storage of the machine. All purely electrical
properties (winding resistance and losses in the magnetic material) and all purely mechanical
properties (moment of inertia and friction) can be represented as lumped elements connected
externally to the terminals of the coupling system.
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0

Fig. 3.1.10 Representation of the coupling field of the system in Fig. 3.1.9.

In an actual application there would be lumped electrical and mechanical elements, in
addition to those inherent in the machine, connected to the coupling network. Our purpose
here is to study the energy conversion properties of the coupling system; consequently, we
will excite the terminals with ideal sources and there will be no need to consider passive
elements connected to the terminals.

We now excite the electrical terminal pair of the coupling system with a sinusoidal current
source

i= Icoswt (e)

and the mechanical terminal pair with the position source

0 = cot, (f)
where o is a positive constant. With these terminal constraints and with steady-state
operation, we wish to calculate the electromechanical energy conversion per cycle of
operation.

Because they are constrained independently, current i and angle 0 are the logical choices
as independent variables. We can sketch the path of operation for one cycle in the i-O
plane, as shown in Fig. 3.1.11. Note that 0 = 0 and 0 = 2nrrepresent the same geometry;
thus, although the trajectory in Fig. 3.1.11 does not close on itself, it nonetheless represents
one cycle of operation in which the final physical state is the same as the initial physical
state. The arrows indicate the direction that the operating point travels in the i-O plane.

When we apply (3.1.63) to this system for a complete cycle of operation, we obtain,

-id- T e dO =0, (g)

wherein f indicates an integral around a closed cycle. The first term represents the net

t=0

2Fig.3.1.11Trajectoryofoperatingpointin
Fig. 3.1.11 Trajectory of operating point in i-O plane.

Conservative magnetic field
coupling system

X= (Lo + L sin 20) i
Te= L i2 cos 20

3.1.3
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electrical energy input over a cycle and the second (with the minus sign) represents the net
mechanical energy input. Because there is no net change in stored energy, we need to
calculate only the first or second term to find energy converted. To be thorough in our
study we shall consider both terms.

We first look at the trajectory of the operating point in a A-i plane. We can express it as
two parametric equations (time is the parameter) by using (b) and (e):

A = I(L o + L2 sin 2ot) cos cot,

i = Icos cot.

Alternatively, we can use trigonometric identities* to eliminate t from the two equations
and obtain

A =i[LO -2si (i -1 l2 .

The double-valued character of this equatiofn makes it easier to plot the trajectory by using
the parametric equations (h) and (i). This trajectory is shown in Fig. 3.1.12, plotted for the
relative parameter values

Next, we can look at the trajectory of the operating point in the Te-O plane. We use (d),
(e), and (f) to write

T e = L 21
2 cos2 0 cos 20.

LO1

r 3rtff •,' E

-0.6

-0.8

-1.0

Fig. 3.1.12 Trajectory of operation in the A-i plane for L2 = *L0.

* sin 2ot = 2 sin wt cos wt; sin wt = -/1 - cos2 wt.
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Fig. 3.1.13 Trajectory of operating point in Te-0 plane.

This trajectory is shown in Fig. 3.1.13. Note once again that although the curve does not
close on itself it represents a full cycle of operation because 0 = 0 and 0 = 27r represent the
same state. The direction of travel of the operating point is indicated on the curve.

We can now calculate the energy converted per cycle. First, evaluating

i Ad = net electrical input power,

we can see graphically in Fig. 3.1.12 that the integral of i dA around the trajectory yields the
area enclosed by the loop; furthermore, this area is positive. There is net conversion of
energy from electrical to mechanical form. Under these conditions the machine is operating
as a motor.

We can evaluate the energy converted per cycle by calculating the area enclosed by the
loop in the first quadrant of Fig. 3.1.12 and multiplying the answer by two. This integral
can best be performed parametrically by writing

i -= Icos 0,

A = I(L o + L2 sin 20) cos 0,

dA = (-IL o sin 0 + 2L2 cos 20 cos 0 - L 2I sin 20 sin 0) dO.

Some trigonometric manipulation allows us to put dA in the form

diA = I(-L o sin 6 - 2L2 cos 0 + 4L2 cos3 0 - 2L2 cos 0 sin a 0) dO.

We can now write for the area of the loop in the first quadrant of Fig. 3.1.12

ei/2 r ()/2s s

2= ji(0) dA(O) = 12(-LO sin 0 cos 0 - 2L, cos2 0 + 4L2 cos4 
0

2 -l
- 2L 2 cosO 0 sin2 0) dO,

"" I' -··-

2;

h
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where W. is the energy converted per cycle. Evaluation of this integral yields

W = L212.L2

We can also calculate the mechanical output energy per cycle from

TJ dO = LI
2 cos2 0 cos 20 dO = L21

2
,

which is equal to the electric input energy per cycle as it should be.

The ideas of energy bookkeeping illustrated by Example 3.1.2 can be
extended to systems with arbitrary numbers of terminal pairs. For more than
two variables the graphical representation of operation in variable space
(Fig. 3.1.11) is difficult; it is possible, however, to represent the path of
operation at each terminal pair (Figs. 3.1.12 and 3.1.13). Such techniques
are especially suitable for systems that operate cyclically.

3.2 EQUATIONS OF MOTION

In the preceding sections of this chapter we have described in detail the
various elements that make up lumped-parameter electromechanical systems.
Our approach is to isolate the coupling system (either electric or magnetic
field) and analyze its properties. We can then write Kirchhoff's laws for the
electrical parts of the system by introducing electromechanical coupling
effects through the terminal relations of the coupling system. Similarly, we
write Newton's second law and continuity of space for the mechanical
parts of the system, including electromechanical coupling effects in the
terminal relations of the coupling system. We now present examples in which
our objective is to write the complete equations of motion for electrome-
chanical systems.

Example 3.2.1. We consider again the magnetic field system shown in Fig. 3.2.1. The
electrical terminal relation of the coupling system was calculated in Example 2.1.1. Now we
include the type of electrical and mechanical elements that will normally be present in
applications of this transducer. The resistance R represents the winding resistance plus any
additional series resistance in the external circuit. This system is of the form conventionally
used to actuate relays, valves, etc.; consequently, the source v,(t) is usually a positive or
negative step. The spring K is used to open the gap x to its maximum width when the current
is zero. The linear damper B represents friction between the nonmagnetic sleeve and the
plunger, although in some cases additional damping is added externally either to slow down
the mechanical motion (as in a time-delay relay) or to reduce the bouncing that may occur
when the plunger reaches x = 0.

In Example 2.1.1, with suitable assumptions, the flux linkages of this device were
calculated to be

1 +x ig'
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Fig. 3.2.1 A magnetic field electromechanical system.

where Lo = 2wdioN2 /g is the coil inductance with the variable gap closed (x = 0). We
wish to write the complete equations of motion.

We have a single electrical loop and a single mechanical node; consequently, we can
write two equations in which the current i and displacement x are the dependent variables.

Applying Kirchhoff's voltage law to the electrical loop and using the terminal voltage
of the coupling system as derived in Example 2.1.1, we obtain

Lo di Lo dx
v,(t) = iR + L (b)

1 + xig dt g(1 + xg)2 dt (b)

To write Newton's second law for the mechanical node we need the force of electric
origin. We first write the magnetic coenergy [see (m) in Table 3.1] as

S= A(i', x) di'

and use (a) to write
1 Loi2

W. -I (c)
2 1 + x/g

We now find the force by using (g) in Table 3.1.

1 Loi2

f 2 g= + (d)
2g(1 + x/g)2 "

This is a force source applied to the mechanical node x.
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We can now write Newton's law for the mechanical node as

1 Loi2 dSx dx
1 M + B- + K(x -1). (e)

2g(l + X/g)2 dt2 dt

Equations b and e are the equations of motion for this system. Note that there are two
equations with two dependent variables (unknowns) i and z. The driving function is the
source voltage v,(t). If we specify the explicit variation of v, with time and also specify
initial conditions, we, at least in theory, can solve (b) and (e) for i and x. The dynamic
behavior of this system is studied in Section 5.1.2.

In the above analysis no account has been taken of the two mechanical stops that limit
the mechanical motion. It is easiest to include them as position sources; in practical cases,
however, the stops may also have some elastic effects that result in bouncing of the plunger
at the ends of its travel. If such effects are important, they can be included in a straight-
forward manner.

Example 3.2.2. In this example we wish to consider a system with more than one
electrical terminal pair and more than one mechanical node. For this purpose we use the
basic electric field coupling system of Example 2.1.5, shown in Fig. 3.2.2, along with
suitable external electrical and mechanical elements.

mass M1

Fxced plate

Width w perpendicular
to page

Fig. 3.2.2 Multiply excited electric field-coupled electromechanical system.
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The electrical terminal relations were derived for this system in Example 2.1.5 and are

q = C1V1 - CmV2, (a)

q2 = -Cvi + CAvI, (b)
where

eOW[I1 + (l•m - X2)1
c•=, (c)x 1

C, = C L + 1 ) (d)

C ow(lm - X2)c, w X (e)

We write Kirchhoff's current law for the two electrical nodes as

dqz

i,,(t) = Gav1 + dq. (g)

Using (a) to (e), we express these equations explicitly in terms of the unknowns as

Sow[l1 + (l,. - x2)] dv1  ow(1.r - X2) do2il(t) = Gt + =1 dt X1 dt

Eow[1 + (l, - 4x] dx l  COw dX2 Eow(l - x2) d1  e~ow dx2
, 1- V1 -jl'- +-- Z 2  2 -t + - V2T (h )

X1t2 T1 x , 2  1 1Q X

eow(- - a2) dv, L2 1 -- 2L dv2 + ow(I - X2) d1-
i9(t) = GAvE - + CO 2  X ) d 2

+ow dz2  Eow(lY - ) d 1  ( 1)v d
+ x dt - i  s -- w -+ V , -. (i)

Before we can write equations for the mechanical nodes we must calculate the forces of
electric origin. Because we want the explicit electrical variables to be the voltages, we use
(n) in Table 3.1 to evaluate the coenergy as

W. = Vtj2 + C+VlIeV + C C2 2
2. (j)

We now use (h) in Table 3.1 to evaluate the forces

aw ac. ac, ac,
fo = = JV1

2  +~I-I+1Ua ~~+ l~~2.U;G X vI,
2

1 1--1_11 1



Lumped-Parameter Electromechanics

We carry out the indicated differentiations and include these two forces as sources in
writing Newton's second law for the two mechanical nodes.

O2w[I1 + ('n2A 2•)] eow(l - X2) 2 EOw(I~ - x2)
1X2 1-2 -X 2

d2x, dx,
= M + B, -+ Klz ,s (m)

q%w o._w. io(~ 1\ d2q, dxz-12 %-W 2£ +2 X2 +L (n)
x O 22 1 dt2 dt

Equations (h), (i), (m), and (n) are the four equations of motion for the system in Fig.
3.2.2. Several important aspects of these equations should be examined. First, we note that
all four equations are coupled, that is, each equation contains all four dependent variables.
We also note that there is no external coupling between electrical terminal pairs and between
mechanical terminal pairs; thus all the coupling occurs through the electric fields. We note
further that the coupling between the two mechanical terminal pairs [see (m)and (n)]
results in terms that are functions of mechanical positions and voltages. Thus these
coupling terms appear essentially as nonlinear elements whose properties depend on the
electrical variables (voltages).

3.3 DISCUSSION

In this chapter we have learned some of the general properties of conserva-
tive electromechanical coupling networks. In the process we have indicated
techniques for finding mechanical forces of electric origin once electrical
terminal relations are known. We have also introduced techniques for
studying the energy conversion properties of coupling fields and illustrated
the method of writing complete equations of motion for electromechanical
systems. In Chapter 5 we complete our study of lumped-parameter electro-
mechanical systems by introducing techniques for solving the equations of
motion and by emphasizing some of the more important phenomena that
occur in these systems.

PROBLEMS

3.1. A simple plunger-type solenoid for the operation of relays, valves, etc., is represented
in Fig. 3P.l. Assume that it is a conservative system and that its electrical equation of
state is

1 + x/a

(a) Find the force that must be appliedto the plunger to hold it in equilibrium at a
displacement x and with a current i.
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Fig. 3P.1

(b) Make a labeled sketch of the force of part (a) as a function of x with constant i.
(c) Make a labeled sketch of the force of part (a) as a function of x with constant A.

3.2. An electrically linear electric field system with two electrical terminal pairs is illustrated
in Fig. 3P.2. The system has the electrical equations of state v1 = S91q1 + S1 92a and

v2 = S21 q + Saq 2 . (See Example 3.1.1 for a physical case of this type.)

(a) Calculate the energy input to the system over each of the three paths A, B, and C
in the q,-q2 plane illustrated in Fig. 3P.2b.

(b) What is the relation between coefficients S1 2 and S21 to make these three values of
energy the same?

(c) Derive the result of (b) by assuming that the system is conservative and applying
reciprocity.

q1 q2

+0- Electric +
vI field V2

-0- system

(a)

Fig. 3P.2

3.3. A slab of dielectric slides between plane parallel electrodes as shown. The dielectric
obeys the constitutive law D = oc(E . E)E + EOE, where Eois the permittivity of free space
and a is a constant. Find the force of electrical origin on the slab. Your answer should take
the formf e =f (v, ).
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Depth d into paper

Fig. 3P.3

3.4. A magnetic circuit, including a movable plunger, is shown in Fig. 3P.4. The circuit is
excited by an N-turn coil and consists of a perfectly permeable yoke and plunger with a
variable air gap x(t) and a fixed nonmagnetic gap d. The system, with the cross section
shown, has a width w into the paper. The following parts lead to a mathematical formulation
of the equations of motion for the mass M, given the excitation I(t).

(a) Find the terminal relation for the flux 2(i, z) linked by the electrical terminal pair.
Ignore fringing in the nonmagnetic gaps. Note that the coil links the flux through
the magnetic material N times.

(b) Find the energy WQ(2, x) stored in the electromechanical coupling. This should
be done by making use of part (a).

(c) Use the energy function Wm(., x) to compute the force of electrical origin f
acting on the plunger.

(d) Write an electrical (circuit) equation of motion involving A and x as the only
dependent variables and I(t) as a driving function.

(e) Write the mechanical equation of motion for the mass. This differential equation
should have Aand x as the only dependent variables, hence taken with the result
of (d) should constitute a mathematical formulation appropriate for analyzing
the system dynamics.

Width w into paper

-Mass M

&

Fig. 3P.4

I

~>lct~ ~RX
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Fig. 3P.5

3.5. A magnetic circuit with a movable element is shown in Fig. 3P.5. With this element
centered, the air gaps have the same length (a). Displacements from this centered position
are denoted by x.

(a) Find the electrical terminal relations Al(il, i2,x) and A2(il, i2,x)in terms of the
parameters defined in the figure.

(b) Compute the coenergy WQ(i1, i2,x) stored in the electromechanical coupling.

3.6. An electrically nonlinear magnetic field coupling network illustrated in Fig. 3P.6 has
the equations of state

_i=I _ _+_,_ f '0Fr)2/P +=J4

o1 + x-a a (1 + x/a)2 j

where I0,Ar,and a are positive constants.

(a) Prove that this system is conservative.
(b) Evaluate the stored energy at the point Ax, x, in variable space.

i fe

+ Magnetic field +
A coupling x

_ system

Fig. 3P.6

+;r-,
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Fig. 3P.7

3.7. The electrical terminal variables of the electromechanical coupling network shown in
Fig. 3P.7 are known to be A2= axi,3 + bxlxpi2 and 22 = bxlx4i 1 + cx2i2 , where a, b, and
c are constants. What is the coenergy Wm(ii, i2 , x1 , x2 ) stored in the coupling network?

3.8. A schematic diagram of a rotating machine with a superconducting rotor (moment of
inertia J) is shown in Fig. 3P.8. Tests have shown that )2 = i1 L1 + izLm cog 0 and A• =
iLm cos 0 + i2L2 , where O(t) is the angular deflection of the shaft to which coil (2) is
attached. The machine is placed in operation as follows:

(a) With the (2) terminals open circuit and the shaft at 0 = 0, I(t) is raised to 10.
(b) Terminals (2) are shorted to conserve the flux 22 regardless of 0(t) or il(t).
(c) I(t) is now made a given driving function.

Write the equation of motion for the shaft. Your answer should be one equation involving
only 0(t) as an unknown. Damping can be ignored.

Normal conducting
stator

Superconducting
rotor

Fig. 3P.8

3.9. The electric terminal variables of the electromechanical coupling system shown in
Fig. 3P.9 are known to be A1 = ax1

2 i,3 + bx 2
2xli2 and 22 = bx2

2 xi + cx2
2 i2

3 , where a,
b, and c are constants.
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-+ I)
V2 (t) 31

E-M
coupling
network

Fig. 3P.9

+: K (relaxed
xI when xi= 0)

B-0

(a) What is the coenergy W.(il, is,x , x2) stored in the coupling network?
(b) Find the forces f1 and fg.
(c) Write the complete set of equations for the system with the terminal constraints

shown.

3.10. The following equations of state describe the conservative, magnetic field coupling
system of Fig. 3P.10 for the ranges of variables of interest (iQ > 0, is > 0). A~ =
Loi1 + Aili22 and A2 = Ai2i2X + Loi2, where Le and A are positive constants.

(a) Find the force applied by the coupling system on the external mechanical circuit
as a function of i1, is , and x.

(b) Write the complete set of differential equations for the system by using il, i2, and
x as dependent variables.

el (t)

e2(t)

Fig. 3P.10

3.11. Two coils are free to rotate as shown in Fig. 3P.11. Each coil has a moment of inertia
J. Measurements have shown that A, = Lli + Mi, cos 0 cos p and A2 = Mi, cos 0 cos v +
L2i2, where L1 , L2, and Mare constants. Because the system is electrically linear, we know
that the coenergy Wm(iL, is, p, 0) is given by W, = jL/ 1

2 + Mcos 0 cos ryixi + 1L2i4.
The coils are driven by the external circuits, where I, and I. are known functions of time

(a) What are the torques of electrical origin T,' and T2e that the electrical system
exerts on the coils?

(b) Write the complete equations of motion that define 0(t) and i(t).

__·______·
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Fig. 3P.11

3.12. A magnetic field system has three electrical terminal pairs and two mechanical
terminal pairs as shown in Fig. 3P.12. The system is electrically linear and may be described
by the relations A1 = L11i1 + L 12i2 + L1zi3 , )2 = L 21i1 + L,2 i2 + L23i3, and As = L31i1 +
L32'2 + L3 3 3i. Each of the inductances Lj (i = 1, 2, 3; j = 1, 2, 3) may be functions of
the mechanical variables xz and X 2. Prove that if the system is conservative, L1 2 = L2 1,
L1-= Lz1 , and L 2s = L3 2. To do this recall that for a conservative system the energy (or
coenergy) does not depend on the path of integration but only on the end point.

it

+ o-
X1

X2
----

Conservative
magnetic field

coupling system

Fig. 3P.12

---- +

fie x1

f 0e-b

3.13. Electrostatic voltmeters are often constructed as shown in Fig. 3P.13a. N pairs of
pie-shaped plates form the stator and rotor of a variable capacitor (Fig. 3P.13a shows six
pairs of rotor plates and six pairs of stator plates). The rotor plates are attached to a con-
ducting shaft that is free to rotate through an angle 0. In the electrostatic voltmeter a
pointer is attached to this shaft so that the deflection 0 is indicated on a calibrated scale
(not shown).

(a) Determine q(v, 0), where q is the charge on the stator and v is the voltage applied
between the rotor and stator. The device is constructed so that fringing fields
can be ignored and the area of the plates is large compared with the cross section
of the shaft. In addition, it is operated in a region of 0 in which the plates overlap
but not completely.

(b) Find the torque of electrical origin on the rotor.
(c) The shaft is attached to a torsional spring which has the deflection 0 when



--

Problems

Fig. 3P.13a

subjected to a torque T,, where 0 and T. are related by Tm = K(O - cc). The
shaft has a moment of inertia J and is subject to a damping torque B dO/dt.
Write the torque equation for the shaft.

(d) The circuit of Fig. 3P.13b is attached to the terminals. Write the electrical equation
for the system. [The results of parts (c) and (d) should constitute two equations
in two unknowns.]

V°(t) +••o

Fig. 3P.13b

(e) A "zero adjust" knob on the electrostatic voltmeter is used to set cc in such a
way that a pointer attached to the shaft indicates 0 when 0 = m. A constant
voltage v = Vo is attached to the terminals. What is the static deflection of the
pointer (0 - o ) as a function of Vo?

3.14. A fixed cylindrical capacitor of length L is made of a solid perfectly conducting inner
rod of radius a which is concentric with a perfectly conducting outer shell of radius b.
An annular half cylinder (inner radius a, outer radius b) of dielectric with permittivity e
and length L is free to move along the axis of the capacitor as shown in Fig. 3P.14 (ignore
fringing).

(a) Find the charge on the outer cylinder q = q(v, x), where v is the voltage between
the inner and outer conductors and z is the displacement of the half cylinder of
dielectric (assume L > x > 0).

(b) Write the conservation of power for this system in terms of the terminal voltage
and current, the electric energy stored, the force of electric origin, and the
velocity of the dielectric.

(c) Find the electric energy stored in terms of q and x.
(d) Find the electric coenergy in terms of v and x.
(e) Find the force of electric origin exerted by the fields on the dielectric.

Suppose one end of the dielectric is attached to a spring of constant K, which is relaxed
when x: = 1.

(f) Write the differential equation of motion for the dielectric, assuming that it has
mass M and slides without friction.

(g) If a constant voltage V0 is established between the conductors, find z.

~ _·
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3.15. A magnetic transducer is shown in Fig. 3P.15. A wedge-shaped infinitely permeable
piece of metal is free to rotate through the angle 0 (- (3 - a) < 0 < f3 - a). The angle 0
is the deflection of the wedge center line from the center line of the device. A magnetic
field is produced in regions (1) and (2) by means of the infinitely permeable yoke and the
N-turn winding.

(a) Find A (i, 0). (You may assume that the fringing fields at the radii r = a and
r = b from the origin O are of negligible importance.)

(b) Compute the magnetic coenergy stored in the electromechanical coupling
W' (i, 0).

(c) Use the conservation of energy to find the torque T e exerted by the magnetic
field on the wedge.

(d) The wedge has a moment of inertia J about O and is constrained by a torsion
spring that exerts the torque Tm = KO. Write the equation of motion for the
wedge, assuming that i is a given function of time.

(e) If i = I0 = constant, show that the wedge can be in static equilibrium at 0 = 0.

3.16. A plane electrode is free to move into the region between plane-parallel electrodes,
as shown in Fig. 3P.16. The outer electrodes are at the same potential, whereas the inner
electrode is at a potential determined by the constant voltage source Vo in series with the
output of an amplifier driven by a signal proportional to the displacement of the movable
electrode itself. Hence the voltage of the inner electrode relative to that of the outer
electrodes is v = - Vo + Ax, where A is a given feedback gain. Find the force of electrical
originfe(x). (Note that this force is only a function of position, since the voltage is a known
function of x.)

< a

Amplifier

Fig. 3P.16

3.17. In Fig. 3P.17 we have a slab of magnetic material positioned between three pole

faces. The nonlinear magnetic material is such that the constituent relation is given by
B = ao(H - H)H + p~H, where a is a known constant.

(a) Show that

2 = Lo0 ( + d)I + LoI(1 - )i + Lo i2

and

22 = Lo i1 + L ( I if + Lo I + d) ,

11111_1~~___1_1_1_*~_~*II
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Nturns N turns

A= JMo Nonlinear magnetic material
g << 1,d << I

Depth D into page
Fig. 3P.17

where
tUoN21D

LO= d

and

(b) Determine an expression for the magnetic coenergy W, = W.(ix, iz2x).
(c) What is the force of magnetic originf e acting on the nonlinear magnetic material?

3.18. A slab of dielectric material is positioned between three perfectly conducting plates
shown in Fig. 3P.18. The dielectric is such that the displacement vector D is related to the
electric field E through the relation D = x(E E)E + 0E, where c is a known positive
constant. The slab and adjacent plates have a width (into paper) w.

(a) With the slab at the position x, find the electrical terminal relations. Ignore
fringing fields and assume that the slab is always well within the plates

qr = q,r(vr v, x) and qI = q,(vr, vj, x).

Fig. 3P.18
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(b) Find the electrical coenergy W,(v,, va, T) stored between the plates.
(c) What is the force of electrical origin fO on the slab of dielectric?

3.19. A perfectly conducting plate of length 2ocR and depth D is attached to the end of a
conducting bar that rotates about the axis O, shown in Fig. 3P.19. A pair of conducting
electrodes forms half cylinders, coaxial with the axis O. The gap A << R. We ignore fringing
fields in the present analysis.

Fig. 3P.19

(a) Make a dimensioned plot of the coenergy W(O0, v1 , v) as a function of 0.
(b) Make a dimensioned plot of the torque exerted by the electric fields on the rotor.
(c) In terms of this torque, write a differential equation for O(t). You may assume

that the rotor has an inertia J but is not impeded by a viscous damping force.

3.20. A parallel-plate capacitor has its bottom plate fixed and its top plate free to move
vertically under the influence of the externally applied mechanical force f. A slab of the
dielectric of thickness d is between the plates shown in Fig. 3P.20a. With plate area A and
displacement x, the electrical terminal relation (neglecting fringing fields; see Example
2.1.4) is

eA
q(v, x) = d(+ -I od)v.

(a) The capacitor is charged to a value of charge q = Q and the terminals are open-
circuited. Calculate, sketch, and label the externally applied force f(Q, x)
necessary to hold the plate in equilibrium and the terminal voltage v(Q, x) as
functions of x for the range 0 < z < 2(e/e)d.

(b) A battery of constant voltage V is connected to the terminals of the capacitor.
Calculate, sketch, and label the externally applied force f(V, z) necessary to
hold the plate in equilibrium and the charge q(V, z) as functions of z for the
range 0 < x < 2(%e/e)d.

(c) By the use of suitable electrical and mechanical sources the system of Fig.
3P.20a is made to traverse the closed cycle in q-x plane shown in Fig. 3P.20b in
the direction indicated by the arrows. Calculate the energy converted per cycle
and specify whether the conversion is from electrical to mechanical or vice
versa.

_~L_
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3.21. The magnetic field transducer illustrated schematically in Fig. 3P.21a has a movable
plunger that is constrained to move only in the x-direction. The coupling field is conserv-
ative and electrically linear and has the electrical equation of state

Lei
1 + x/a

where Lo and a are positive constants (see Example 2.1.1).
(a) For any flux linkage A and position x find the external force f (see Fig. 3P.21a),

which must be applied to hold the plunger in static equilibrium.
We now constrain the electrical terminal pair with a voltage source v and the movable
plunger by a position source x in such a way that the system slowly traverses the closed
cycle in the A-x plane illustrated in Fig. 3P.21b.

(b) Sketch and label current i as a function of flux linkage A for the closed cycle of
Fig. 3P.21b.

(c) Sketch and label the force f applied by the position source as a function of x for
closed cycle of Fig. 3P.21b.

(d) Find the energy converted between electrical and mechanical forms for one
traversal of the cycle of Fig. 3P.21b. Specify the direction of flow.

3.22. The system shown in Fig. 3P.22 consists of two thin perfectly conducting plates, one
of which is free to move. The movable plate slides on a perfectly conducting plane. It has
been proposed that energy could be converted from mechanical to electrical form by the
following scheme:
The process is started by holding the plate at x = X b with the switch in position (1). An
external mechanical system moves the plate to x = Xa and holds it there. S is then put in

I2-1
-- ->

Depth D :
movable

h>>x

plate

Xa

Fig. 3P.22
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position (2) and the mechanical system moves the plate back to x = X, and holds it in
place. S is then reset in position (1) and the cycle is repeated several times.

(a) To convert energyfrom mechanicalto electricalform during each cycle, how must
I, and 12 be related?

(b) Sketch the path of operation in the i-x plane under the conditions of part (a)
and compute the amount of energy converted from mechanical to electrical form
during one cycle.

(c) Sketch carefully the path of operation for one cycle in the A2-plane under the
conditions of part (a). Compute the amount of energy converted from mechanical
to electrical form along each part of the path in the A-x plane.




