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Lumped-Parameter Electromechanics

We carry out the indicated differentiations and include these two forces as sources in
writing Newton's second law for the two mechanical nodes.
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Equations (h), (i), (m), and (n) are the four equations of motion for the system in Fig.
3.2.2. Several important aspects of these equations should be examined. First, we note that
all four equations are coupled, that is, each equation contains all four dependent variables.
We also note that there is no external coupling between electrical terminal pairs and between
mechanical terminal pairs; thus all the coupling occurs through the electric fields. We note
further that the coupling between the two mechanical terminal pairs [see (m)and (n)]
results in terms that are functions of mechanical positions and voltages. Thus these
coupling terms appear essentially as nonlinear elements whose properties depend on the
electrical variables (voltages).

3.3 DISCUSSION

In this chapter we have learned some of the general properties of conserva-
tive electromechanical coupling networks. In the process we have indicated
techniques for finding mechanical forces of electric origin once electrical
terminal relations are known. We have also introduced techniques for
studying the energy conversion properties of coupling fields and illustrated
the method of writing complete equations of motion for electromechanical
systems. In Chapter 5 we complete our study of lumped-parameter electro-
mechanical systems by introducing techniques for solving the equations of
motion and by emphasizing some of the more important phenomena that
occur in these systems.

PROBLEMS

3.1. A simple plunger-type solenoid for the operation of relays, valves, etc., is represented
in Fig. 3P.l. Assume that it is a conservative system and that its electrical equation of
state is

1 + x/a

(a) Find the force that must be appliedto the plunger to hold it in equilibrium at a
displacement x and with a current i.
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(b) Make a labeled sketch of the force of part (a) as a function of x with constant i.
(c) Make a labeled sketch of the force of part (a) as a function of x with constant A.

3.2. An electrically linear electric field system with two electrical terminal pairs is illustrated
in Fig. 3P.2. The system has the electrical equations of state v1 = S91q1 + S1 92a and

v2 = S21 q + Saq 2 . (See Example 3.1.1 for a physical case of this type.)

(a) Calculate the energy input to the system over each of the three paths A, B, and C
in the q,-q2 plane illustrated in Fig. 3P.2b.

(b) What is the relation between coefficients S1 2 and S21 to make these three values of
energy the same?

(c) Derive the result of (b) by assuming that the system is conservative and applying
reciprocity.

q1 q2

+0- Electric +
vI field V2

-0- system

(a)

Fig. 3P.2

3.3. A slab of dielectric slides between plane parallel electrodes as shown. The dielectric
obeys the constitutive law D = oc(E . E)E + EOE, where Eois the permittivity of free space
and a is a constant. Find the force of electrical origin on the slab. Your answer should take
the formf e =f (v, ).
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Depth d into paper

Fig. 3P.3

3.4. A magnetic circuit, including a movable plunger, is shown in Fig. 3P.4. The circuit is
excited by an N-turn coil and consists of a perfectly permeable yoke and plunger with a
variable air gap x(t) and a fixed nonmagnetic gap d. The system, with the cross section
shown, has a width w into the paper. The following parts lead to a mathematical formulation
of the equations of motion for the mass M, given the excitation I(t).

(a) Find the terminal relation for the flux 2(i, z) linked by the electrical terminal pair.
Ignore fringing in the nonmagnetic gaps. Note that the coil links the flux through
the magnetic material N times.

(b) Find the energy WQ(2, x) stored in the electromechanical coupling. This should
be done by making use of part (a).

(c) Use the energy function Wm(., x) to compute the force of electrical origin f
acting on the plunger.

(d) Write an electrical (circuit) equation of motion involving A and x as the only
dependent variables and I(t) as a driving function.

(e) Write the mechanical equation of motion for the mass. This differential equation
should have Aand x as the only dependent variables, hence taken with the result
of (d) should constitute a mathematical formulation appropriate for analyzing
the system dynamics.

Width w into paper

-Mass M

&

Fig. 3P.4
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Fig. 3P.5

3.5. A magnetic circuit with a movable element is shown in Fig. 3P.5. With this element
centered, the air gaps have the same length (a). Displacements from this centered position
are denoted by x.

(a) Find the electrical terminal relations Al(il, i2,x) and A2(il, i2,x)in terms of the
parameters defined in the figure.

(b) Compute the coenergy WQ(i1, i2,x) stored in the electromechanical coupling.

3.6. An electrically nonlinear magnetic field coupling network illustrated in Fig. 3P.6 has
the equations of state

_i=I _ _+_,_ f '0Fr)2/P +=J4

o1 + x-a a (1 + x/a)2 j

where I0,Ar,and a are positive constants.

(a) Prove that this system is conservative.
(b) Evaluate the stored energy at the point Ax, x, in variable space.

i fe
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Fig. 3P.6
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3.7. The electrical terminal variables of the electromechanical coupling network shown in
Fig. 3P.7 are known to be A2= axi,3 + bxlxpi2 and 22 = bxlx4i 1 + cx2i2 , where a, b, and
c are constants. What is the coenergy Wm(ii, i2 , x1 , x2 ) stored in the coupling network?

3.8. A schematic diagram of a rotating machine with a superconducting rotor (moment of
inertia J) is shown in Fig. 3P.8. Tests have shown that )2 = i1 L1 + izLm cog 0 and A• =
iLm cos 0 + i2L2 , where O(t) is the angular deflection of the shaft to which coil (2) is
attached. The machine is placed in operation as follows:

(a) With the (2) terminals open circuit and the shaft at 0 = 0, I(t) is raised to 10.
(b) Terminals (2) are shorted to conserve the flux 22 regardless of 0(t) or il(t).
(c) I(t) is now made a given driving function.

Write the equation of motion for the shaft. Your answer should be one equation involving
only 0(t) as an unknown. Damping can be ignored.

Normal conducting
stator

Superconducting
rotor

Fig. 3P.8

3.9. The electric terminal variables of the electromechanical coupling system shown in
Fig. 3P.9 are known to be A1 = ax1

2 i,3 + bx 2
2xli2 and 22 = bx2

2 xi + cx2
2 i2

3 , where a,
b, and c are constants.
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(a) What is the coenergy W.(il, is,x , x2) stored in the coupling network?
(b) Find the forces f1 and fg.
(c) Write the complete set of equations for the system with the terminal constraints

shown.

3.10. The following equations of state describe the conservative, magnetic field coupling
system of Fig. 3P.10 for the ranges of variables of interest (iQ > 0, is > 0). A~ =
Loi1 + Aili22 and A2 = Ai2i2X + Loi2, where Le and A are positive constants.

(a) Find the force applied by the coupling system on the external mechanical circuit
as a function of i1, is , and x.

(b) Write the complete set of differential equations for the system by using il, i2, and
x as dependent variables.

el (t)

e2(t)

Fig. 3P.10

3.11. Two coils are free to rotate as shown in Fig. 3P.11. Each coil has a moment of inertia
J. Measurements have shown that A, = Lli + Mi, cos 0 cos p and A2 = Mi, cos 0 cos v +
L2i2, where L1 , L2, and Mare constants. Because the system is electrically linear, we know
that the coenergy Wm(iL, is, p, 0) is given by W, = jL/ 1

2 + Mcos 0 cos ryixi + 1L2i4.
The coils are driven by the external circuits, where I, and I. are known functions of time

(a) What are the torques of electrical origin T,' and T2e that the electrical system
exerts on the coils?

(b) Write the complete equations of motion that define 0(t) and i(t).

__·______·
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Fig. 3P.11

3.12. A magnetic field system has three electrical terminal pairs and two mechanical
terminal pairs as shown in Fig. 3P.12. The system is electrically linear and may be described
by the relations A1 = L11i1 + L 12i2 + L1zi3 , )2 = L 21i1 + L,2 i2 + L23i3, and As = L31i1 +
L32'2 + L3 3 3i. Each of the inductances Lj (i = 1, 2, 3; j = 1, 2, 3) may be functions of
the mechanical variables xz and X 2. Prove that if the system is conservative, L1 2 = L2 1,
L1-= Lz1 , and L 2s = L3 2. To do this recall that for a conservative system the energy (or
coenergy) does not depend on the path of integration but only on the end point.

it
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coupling system

Fig. 3P.12
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3.13. Electrostatic voltmeters are often constructed as shown in Fig. 3P.13a. N pairs of
pie-shaped plates form the stator and rotor of a variable capacitor (Fig. 3P.13a shows six
pairs of rotor plates and six pairs of stator plates). The rotor plates are attached to a con-
ducting shaft that is free to rotate through an angle 0. In the electrostatic voltmeter a
pointer is attached to this shaft so that the deflection 0 is indicated on a calibrated scale
(not shown).

(a) Determine q(v, 0), where q is the charge on the stator and v is the voltage applied
between the rotor and stator. The device is constructed so that fringing fields
can be ignored and the area of the plates is large compared with the cross section
of the shaft. In addition, it is operated in a region of 0 in which the plates overlap
but not completely.

(b) Find the torque of electrical origin on the rotor.
(c) The shaft is attached to a torsional spring which has the deflection 0 when



--
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Fig. 3P.13a

subjected to a torque T,, where 0 and T. are related by Tm = K(O - cc). The
shaft has a moment of inertia J and is subject to a damping torque B dO/dt.
Write the torque equation for the shaft.

(d) The circuit of Fig. 3P.13b is attached to the terminals. Write the electrical equation
for the system. [The results of parts (c) and (d) should constitute two equations
in two unknowns.]

V°(t) +••o

Fig. 3P.13b

(e) A "zero adjust" knob on the electrostatic voltmeter is used to set cc in such a
way that a pointer attached to the shaft indicates 0 when 0 = m. A constant
voltage v = Vo is attached to the terminals. What is the static deflection of the
pointer (0 - o ) as a function of Vo?

3.14. A fixed cylindrical capacitor of length L is made of a solid perfectly conducting inner
rod of radius a which is concentric with a perfectly conducting outer shell of radius b.
An annular half cylinder (inner radius a, outer radius b) of dielectric with permittivity e
and length L is free to move along the axis of the capacitor as shown in Fig. 3P.14 (ignore
fringing).

(a) Find the charge on the outer cylinder q = q(v, x), where v is the voltage between
the inner and outer conductors and z is the displacement of the half cylinder of
dielectric (assume L > x > 0).

(b) Write the conservation of power for this system in terms of the terminal voltage
and current, the electric energy stored, the force of electric origin, and the
velocity of the dielectric.

(c) Find the electric energy stored in terms of q and x.
(d) Find the electric coenergy in terms of v and x.
(e) Find the force of electric origin exerted by the fields on the dielectric.

Suppose one end of the dielectric is attached to a spring of constant K, which is relaxed
when x: = 1.

(f) Write the differential equation of motion for the dielectric, assuming that it has
mass M and slides without friction.

(g) If a constant voltage V0 is established between the conductors, find z.

~ _·
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3.15. A magnetic transducer is shown in Fig. 3P.15. A wedge-shaped infinitely permeable
piece of metal is free to rotate through the angle 0 (- (3 - a) < 0 < f3 - a). The angle 0
is the deflection of the wedge center line from the center line of the device. A magnetic
field is produced in regions (1) and (2) by means of the infinitely permeable yoke and the
N-turn winding.

(a) Find A (i, 0). (You may assume that the fringing fields at the radii r = a and
r = b from the origin O are of negligible importance.)

(b) Compute the magnetic coenergy stored in the electromechanical coupling
W' (i, 0).

(c) Use the conservation of energy to find the torque T e exerted by the magnetic
field on the wedge.

(d) The wedge has a moment of inertia J about O and is constrained by a torsion
spring that exerts the torque Tm = KO. Write the equation of motion for the
wedge, assuming that i is a given function of time.

(e) If i = I0 = constant, show that the wedge can be in static equilibrium at 0 = 0.

3.16. A plane electrode is free to move into the region between plane-parallel electrodes,
as shown in Fig. 3P.16. The outer electrodes are at the same potential, whereas the inner
electrode is at a potential determined by the constant voltage source Vo in series with the
output of an amplifier driven by a signal proportional to the displacement of the movable
electrode itself. Hence the voltage of the inner electrode relative to that of the outer
electrodes is v = - Vo + Ax, where A is a given feedback gain. Find the force of electrical
originfe(x). (Note that this force is only a function of position, since the voltage is a known
function of x.)

< a

Amplifier

Fig. 3P.16

3.17. In Fig. 3P.17 we have a slab of magnetic material positioned between three pole

faces. The nonlinear magnetic material is such that the constituent relation is given by
B = ao(H - H)H + p~H, where a is a known constant.

(a) Show that

2 = Lo0 ( + d)I + LoI(1 - )i + Lo i2

and

22 = Lo i1 + L ( I if + Lo I + d) ,

11111_1~~___1_1_1_*~_~*II
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where
tUoN21D

LO= d

and

(b) Determine an expression for the magnetic coenergy W, = W.(ix, iz2x).
(c) What is the force of magnetic originf e acting on the nonlinear magnetic material?

3.18. A slab of dielectric material is positioned between three perfectly conducting plates
shown in Fig. 3P.18. The dielectric is such that the displacement vector D is related to the
electric field E through the relation D = x(E E)E + 0E, where c is a known positive
constant. The slab and adjacent plates have a width (into paper) w.

(a) With the slab at the position x, find the electrical terminal relations. Ignore
fringing fields and assume that the slab is always well within the plates

qr = q,r(vr v, x) and qI = q,(vr, vj, x).

Fig. 3P.18
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(b) Find the electrical coenergy W,(v,, va, T) stored between the plates.
(c) What is the force of electrical origin fO on the slab of dielectric?

3.19. A perfectly conducting plate of length 2ocR and depth D is attached to the end of a
conducting bar that rotates about the axis O, shown in Fig. 3P.19. A pair of conducting
electrodes forms half cylinders, coaxial with the axis O. The gap A << R. We ignore fringing
fields in the present analysis.

Fig. 3P.19

(a) Make a dimensioned plot of the coenergy W(O0, v1 , v) as a function of 0.
(b) Make a dimensioned plot of the torque exerted by the electric fields on the rotor.
(c) In terms of this torque, write a differential equation for O(t). You may assume

that the rotor has an inertia J but is not impeded by a viscous damping force.

3.20. A parallel-plate capacitor has its bottom plate fixed and its top plate free to move
vertically under the influence of the externally applied mechanical force f. A slab of the
dielectric of thickness d is between the plates shown in Fig. 3P.20a. With plate area A and
displacement x, the electrical terminal relation (neglecting fringing fields; see Example
2.1.4) is

eA
q(v, x) = d(+ -I od)v.

(a) The capacitor is charged to a value of charge q = Q and the terminals are open-
circuited. Calculate, sketch, and label the externally applied force f(Q, x)
necessary to hold the plate in equilibrium and the terminal voltage v(Q, x) as
functions of x for the range 0 < z < 2(e/e)d.

(b) A battery of constant voltage V is connected to the terminals of the capacitor.
Calculate, sketch, and label the externally applied force f(V, z) necessary to
hold the plate in equilibrium and the charge q(V, z) as functions of z for the
range 0 < x < 2(%e/e)d.

(c) By the use of suitable electrical and mechanical sources the system of Fig.
3P.20a is made to traverse the closed cycle in q-x plane shown in Fig. 3P.20b in
the direction indicated by the arrows. Calculate the energy converted per cycle
and specify whether the conversion is from electrical to mechanical or vice
versa.

_~L_
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3.21. The magnetic field transducer illustrated schematically in Fig. 3P.21a has a movable
plunger that is constrained to move only in the x-direction. The coupling field is conserv-
ative and electrically linear and has the electrical equation of state

Lei
1 + x/a

where Lo and a are positive constants (see Example 2.1.1).
(a) For any flux linkage A and position x find the external force f (see Fig. 3P.21a),

which must be applied to hold the plunger in static equilibrium.
We now constrain the electrical terminal pair with a voltage source v and the movable
plunger by a position source x in such a way that the system slowly traverses the closed
cycle in the A-x plane illustrated in Fig. 3P.21b.

(b) Sketch and label current i as a function of flux linkage A for the closed cycle of
Fig. 3P.21b.

(c) Sketch and label the force f applied by the position source as a function of x for
closed cycle of Fig. 3P.21b.

(d) Find the energy converted between electrical and mechanical forms for one
traversal of the cycle of Fig. 3P.21b. Specify the direction of flow.

3.22. The system shown in Fig. 3P.22 consists of two thin perfectly conducting plates, one
of which is free to move. The movable plate slides on a perfectly conducting plane. It has
been proposed that energy could be converted from mechanical to electrical form by the
following scheme:
The process is started by holding the plate at x = X b with the switch in position (1). An
external mechanical system moves the plate to x = Xa and holds it there. S is then put in

I2-1
-- ->

Depth D :
movable

h>>x

plate

Xa

Fig. 3P.22
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position (2) and the mechanical system moves the plate back to x = X, and holds it in
place. S is then reset in position (1) and the cycle is repeated several times.

(a) To convert energyfrom mechanicalto electricalform during each cycle, how must
I, and 12 be related?

(b) Sketch the path of operation in the i-x plane under the conditions of part (a)
and compute the amount of energy converted from mechanical to electrical form
during one cycle.

(c) Sketch carefully the path of operation for one cycle in the A2-plane under the
conditions of part (a). Compute the amount of energy converted from mechanical
to electrical form along each part of the path in the A-x plane.




