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Introduction to the Electromechanics of Elastic Media

PROBLEMS

11.1. In Fig. 11P.1 a static elastic material is constrained along its vertical sides so that

a a
x2 - = 0.

In the absence of a gravitational field, the material has surfaces at xz = 0 and z, = L.

(a) Compute the material displacement 6l(x_) caused by the gravitational field.
(b) Find all components of the stress Ti.
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Fig. 11P.1

11.2. In Fig. 11P.2 a slab ofelastic solid with constants p, G, Aand a thickness L is attached
on one side to a rigid wall at xz = 0. A perfectly conducting thin plate of mass Mis attached
to the other side of the solid. A second perfectly conducting plate is fixed at zx = -L - d.
Assume that a8/8x = ajax3 = 0 and 6,(-L, t) << d.

(a) If the voltage between the two capacitor plates is V(t) = Vo + V cos wt, find
61(-L,t) V << V0.

(b) For what frequency range does the mechanicalpart of the system appear lumped ?
(c) Give the mechanical lumped parameters for the frequency range defined in (b).
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11.3. A slab ofelastic material of length I in the x-direction and infinite in extent in the x-
and x~-directions has the elastic constants G and Aand mass density p.Its surface at z, = I
is driven in the x 2-direction uniformly by a displacement source 6o(t). The surface at z 1 = 0
is free to move in the x 2-direction without restraint.

Assume that 60 (t) = Re (de'0), where bo and w are given constants. Neglect the force
of gravity and assume that

a a

aX2 aX3

(a) Find the stress and displacement in the slab.
(b) In the limit of low frequency to what lumped mechanical element does the slab

correspond ?
(c) Find the lowest frequency for which the slab may be said to "resonate."

11.4. In a coordinate system (x1 , x2 , x3 ) a surface with the normal vector n and supporting
the stress Tij is subject to the traction (see Section 8.2.2)* ri = Tijn, . Assume that the stress
components Ti- are known and that there is a surface with an orientation such that the
traction is in the same direction as the normal vector; that is, 7i = caujnj, where a is the
stress acting normal to the surface.

(a) Write three equations in the three unknowns (n ,, n2, n3).
(b) Because these equations are homogeneous, their compatibility requires that the

determinant of the coefficients vanish. Show that this gives an expression for t.

(c) Consider the case in which T, 2 = T 13 = To and all other components are zero.
What are the possible values of the normal stress a? Compare your result with
that found in Example 11.2.1.

11.5. In Example 11.2.1 it was shown that the three elastic constants (G, E, V)must be
related if a perfectly elastic material is isotropic [(g) of that example]. This was done by
considering the transformation of a particular case of stress and strain from one coordinate
system to a second with the same za-axis but a 45' rotation in the x,-x 2 plane. Follow the
arguments presented in Example 11.2.1 to show that the relation is implied for an arbitrary
stress condition and an arbitrary rotation of coordinates. Remember that the aij that
determine the rotation of coordinates are related by (8.2.23)* and that if T" = avraeTrs
then Trs = a,,ra,2 T'.

* Appendix G.
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Elastic bar having modulus of elasticity E
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Fig. 11P.6

11.6. An elastic bar is often used in musical instruments as a source of audio-frequency
tone. The bar is suspended by strings, attached to it at such points that the transverse (x2)
motion of the elastic material is not appreciably inhibited. (Examples are the vibraharp and
marimba.) If the bar is struck by a mallet, it vibrates at one or more of its resonance
frequencies. We consider here the problem of finding these frequencies, under the assumption
that the bar is as shown in Fig. I P.6. The bar is supported so that transverse motions are
uninhibited, that is, both ends are free.

(a) Find an equation of the form cos Pcosh # = 1 [f = l(w)] which stipulates the
resonance frequencies.

(b) Use a graphical solution of the equation found in (a) to determine the two lowest
resonance frequencies in terms of E and the dimensions of the bar.

(c) Sketch the transverse deflection as a function ofx. for the lowest nontrivial mode.

11.7. A thin elastic beam of thickness 2b, density p, and modulus ofelasticity Eis clamped
on both ends to rigid walls. The total length of the beam is L, as shown in Fig. lIP.7.

(a) If the beam is suddenly struck from above, what is the lowest (nonzero) frequency
at which it will "ring"; that is, what is its lowest natural frequency ?

(b) Give a numerical answer for (a) in Hertz if the beam is steel with length L = 50
cm and thickness 2b = 0.10 cm.

(c) What is the numerical value, again in Hertz, of the next higher resonance
frequency?

Fig. 11P.7
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11.8. The electromechanical system shown in Fig. 11P.8 consists of a long thin elastic
beam attached to the plunger of an electromagnet. The plunger has permeability ' and is
free to slide between the faces of the electromagnet. Treat the plunger as a rigid body with
mass M. Assume that D < L. The coil on the electromagnet is now excited with a current
i(t) = o1 + il cos wot, where il I<< 10. You may assume that an externally applied force Fo
holds the plunger in equilibrium against the current Io.Also in equilibrium, the displacement
of the beam M(0) = 0.

(a) What is the value of Fo required for equilibrium?
(b) Find an expression for the electrical impedance Z(jw) seen at the terminals of

the coil, where Z(jwo) = ir(jo)1il, and 6(jw) is the complex amplitude of the steady-
state voltage developed at the terminals.

(c) What is the expression that determines the poles of the impedance Z(jw)?

11.9. A thin beam clamped to two rigid walls is shown in Fig. llP.9. Suppose that the
beam is perfectly conducting and that it is placed between two perfectly conducting rigid
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plates at xz = ±a.Assume that there is a magnetic field trapped between the beam and the
plates, so that when the beam isflat H = H0i1 on both sides of the beam. (In the perfect
conductor H = 0.) Make the approximations that wavelengths of a disturbance on the
beam are long compared with a and that the magnetic field is always uniform in the x2-and
xz-directions.

(a) Write the equation of motion for the beam.
(b) Compute the first resonance frequency of the beam.
(c) Compare the result of (b) with Problem 11.7 and give a physical explanation for

any differences which occur.
(d) Can the system be unstable? Explain.
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11.10. The system shown schematically in Fig. 11P.10 is similar to that discussed in Section
11.4.2b. The material of the beam is steel and the system constants and dimensions are

E = 2.2 x 101 N/m2 A =- 10- 4 m2

p = 7.9 x 103 kg/ m3 D = 10 m

I = 10- 1 m b = 10-3 m

V" = 1000 V d - 10- m

We are interested in investigating the impedance seen by the signal source v, for values
of exciting frequency near the first resonance of the elastic bar. This type of information
would be essential if we planned to use this system to control the frequency of an oscillator.
For sinusoidal excitation v, = Re [(,eimt] and small-signal, steady-state operation:

(a) Find a literalexpression for the input impedance Z(jo) = i 81t,, where i, is the
complex amplitude of the input current.

(b) For the numerical values given find a numericalvalue for the lowest frequency
wo at which the impedance Z(jw) has a zero.

(c) Assume operation at frequencies near we by setting w = we + Am, where

Amwl << wo and Amw can be either positive or negative. For this restriction the
impedance Z appears as a series LC circuit. Find numerical values for the
equivalent capacitance C and equivalent inductance L.

11.11. Consider the planar elastic waveguide of Fig. 11.4.18 but with the walls at xa = 0
and a' = d fixed.

(a) Find the dispersion equation for waves in the form of

6, = Re J(x 2) exp j(mt - klx).
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(b) Sketch the results of part (a) as an co-k plot and compare with Fig. 11.4.19.
Is there a principal mode of propagation ?

11.12. A cylindrical, circular elastic section of material with the shear modulus G, density p,
and radius R is embedded in a perfectly rigid solid so that the material at r = R is fixed.
This structure is to be used as a waveguide for elastic shear waves. To find the dispersion
equation for these waves, we confine interest to material displacements in the form of
S = 66(r, z, t)io. Find the dispersion equation for all modes in this form. (A discussion of
Bessel's functions is given on p. 207 of S. Ramo, J. Whinnery, and T. Van Duzer, Fields
and Waves in Communication Electronics, Wiley, New York, 1965.)

Fig. 11P.12
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