
Principles of Computer
System Design

An Introduction

Chapter 11
Information Security

Jerome H. Saltzer

M. Frans Kaashoek

Massachusetts Institute of Technology

Version 5.0

Saltzer & Kaashoek Ch. 11, p. i June 24, 2009 12:29 am

Copyright © 2009 by Jerome H. Saltzer and M. Frans Kaashoek. Some Rights Reserved.

This work is licensed under a Creative Commons Attribution-Non
commercial-Share Alike 3.0 United States License. For more information on what this
license means, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Designations used by companies to distinguish their products are often claimed as trade
marks or registered trademarks. In all instances in which the authors are aware of a claim,
the product names appear in initial capital or all capital letters. All trademarks that
appear or are otherwise referred to in this work belong to their respective owners.

Suggestions, Comments, Corrections, and Requests to waive license restrictions:
Please send correspondence by electronic mail to:

Saltzer@mit.edu
and

kaashoek@mit.edu

Saltzer & Kaashoek Ch. 11, p. ii June 24, 2009 12:29 am

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
mailto:Saltzer@mit.edu
mailto:kaashoek@mit.edu

CHAPTER

Information Security 11
Information security. The protection of information and information

systems against unauthorized access or modification of information,

whether in storage, processing, or transit, and against denial of service

to authorized users.

— 	Information Operations. Joint Chiefs of Staff of the United States
Armed Forces, Joint Publication 3-13 (13 February 2006).

CHAPTER CONTENTS
Overview..11–4

11.1 	Introduction to Secure Systems ..11–5

11.1.1 Threat Classification ... 11–7

11.1.2 Security is a Negative Goal .. 11–9

11.1.3 The Safety Net Approach ..11–10

11.1.4 Design Principles ...11–13

11.1.5 A High d(technology)/dt Poses Challenges For Security11–17

11.1.6 Security Model ..11–18

11.1.7 Trusted Computing Base ..11–26

11.1.8 The Road Map for this Chapter ..11–28

11.2 	Authenticating Principals ..11–28

11.2.1 Separating Trust from Authenticating Principals11–29

11.2.2 Authenticating Principals ..11–30

11.2.3 	Cryptographic Hash Functions, Computationally Secure, Window of

Validity ..11–32

11.2.4 Using Cryptographic Hash Functions to Protect Passwords11–34

11.3 	Authenticating Messages...11–36

11.3.1 Message Authentication is Different from Confidentiality11–37

11.3.2 Closed versus Open Designs and Cryptography11–38

11.3.3 Key-Based Authentication Model ..11–41

11.3.4 Properties of SIGN and VERIFY ...11–41 11–1

Saltzer & Kaashoek Ch. 11, p. 1	 June 24, 2009 12:29 am

11–2 CHAPTER 11 Information Security

11.3.5 Public-key versus Shared-Secret Authentication11–44

11.3.6 Key Distribution ..11–45

11.3.7 Long-Term Data Integrity with Witnesses11–48

11.4 Message Confidentiality ..11–49

11.4.1 Message Confidentiality Using Encryption11–49

11.4.2 Properties of ENCRYPT and DECRYPT11–50

11.4.3 Achieving both Confidentiality and Authentication11–52

11.4.4 Can Encryption be Used for Authentication?11–53

11.5 Security Protocols ...11–54

11.5.1 Example: Key Distribution ..11–54

11.5.2 Designing Security Protocols ...11–60

11.5.3 Authentication Protocols ...11–63

11.5.4 An Incorrect Key Exchange Protocol11–66

11.5.5 Diffie-Hellman Key Exchange Protocol11–68

11.5.6 A Key Exchange Protocol Using a Public-Key System11–69

11.5.7 Summary ...11–71

11.6 Authorization: Controlled Sharing11–72

11.6.1 Authorization Operations ..11–73

11.6.2 The Simple Guard Model ..11–73

11.6.2.1 The Ticket System...11–74

11.6.2.2 The List System ..11–74

11.6.2.3 Tickets Versus Lists, and Agencies...............................11–75

11.6.2.4 Protection Groups ...11–76

11.6.3 Example: Access Control in UNIX ..11–76

11.6.3.1 Principals in UNIX ...11–76

11.6.3.2 ACLs in UNIX ...11–77

11.6.3.3 The Default Principal and Permissions of a Process.........11–78

11.6.3.4 Authenticating Users ...11–79

11.6.3.5 Access Control Check...11–79

11.6.3.6 Running Services ..11–80

11.6.3.7 Summary of UNIX Access Control11–80

11.6.4 The Caretaker Model ..11–80

11.6.5 Non-Discretionary Access and Information Flow Control11–81

11.6.5.1 Information Flow Control Example...............................11–83

11.6.5.2 Covert Channels ...11–84

11.7 Advanced Topic: Reasoning about Authentication11–85

11.7.1 Authentication Logic ..11–86

11.7.1.1 Hard-wired Approach...11–88

11.7.1.2 Internet Approach...11–88

11.7.2 Authentication in Distributed Systems11–89

11.7.3 Authentication across Administrative Realms11–90

11.7.4 Authenticating Public Keys ..11–92

11.7.5 Authenticating Certificates ..11–94

11.7.6 Certificate Chains ..11–97

11.7.6.1 Hierarchy of Central Certificate Authorities11–97

Saltzer & Kaashoek Ch. 11, p. 2 June 24, 2009 12:29 am

11–3

11.7.6.2 Web of Trust...11–98

11.8 Cryptography as a Building Block (Advanced Topic)............11–99

11.8.1 Unbreakable Cipher for Confidentiality (One-Time Pad)11–99

11.8.2 Pseudorandom Number Generators 11–101

11.8.2.1 Rc4: A Pseudorandom Generator and its Use 11–101

11.8.2.2 Confidentiality using RC4 ... 11–102

11.8.3 Block Ciphers .. 11–103

11.8.3.1 Advanced Encryption Standard (AES)......................... 11–103

11.8.3.2 Cipher-Block Chaining.. 11–105

11.8.4 Computing a Message Authentication Code 11–106

11.8.4.1 MACs Using Block Cipher or Stream Cipher 11–107

11.8.4.2 MACs Using a Cryptographic Hash Function 11–107

11.8.5 A Public-Key Cipher ... 11–109

11.8.5.1 Rivest-Shamir-Adleman (RSA) Cipher 11–109

11.8.5.2 Computing a Digital Signature 11–111

11.8.5.3 A Public-Key Encrypting System................................ 11–112

11.9 .Summary..11–112

11.10 Case Study: Transport Layer Security (TLS) for the Web.11–116

11.10.1 The TLS Handshake ... 11–117

11.10.2 Evolution of TLS .. 11–120

11.10.3 Authenticating Services with TLS 11–121

11.10.4 User Authentication ... 11–123

11.11 War Stories: Security System Breaches...........................11–125

11.11.1 Residues: Profitable Garbage .. 11–126

11.11.1.1 1963: Residues in CTSS ... 11–126

11.11.1.2 1997: Residues in Network Packets.......................... 11–127

11.11.1.3 2000: Residues in HTTP ... 11–127

11.11.1.4 Residues on Removed Disks.................................... 11–128

11.11.1.5 Residues in Backup Copies...................................... 11–128

11.11.1.6 Magnetic Residues: High-Tech Garbage Analysis 11–129

11.11.1.7 2001 and 2002: More Low-tech Garbage Analysis 11–129

11.11.2 Plaintext Passwords Lead to Two Breaches 11–130

11.11.3 The Multiply Buggy Password Transformation 11–131

11.11.4 Controlling the Configuration ... 11–131

11.11.4.1 Authorized People Sometimes do Unauthorized Things11–132

11.11.4.2 The System Release Trick 11–132

11.11.4.3 The Slammer Worm... 11–132

11.11.5 The Kernel Trusts the User .. 11–135

11.11.5.1 Obvious Trust ... 11–135

11.11.5.2 Nonobvious Trust (Tocttou) 11–136

11.11.5.3 Tocttou 2: Virtualizing the DMA Channel. 11–136

11.11.6 Technology Defeats Economic Barriers 11–137

11.11.6.1 An Attack on Our System Would be Too Expensive 11–137

11.11.6.2 Well, it Used to be Too Expensive 11–137

11.11.7 Mere Mortals Must be Able to Figure Out How to Use it 11–138

Saltzer & Kaashoek Ch. 11, p. 3 June 24, 2009 12:29 am

11–4 CHAPTER 11 Information Security

11.11.8 The Web can be a Dangerous Place 11–139

11.11.9 The Reused Password ... 11–140

11.11.10 Signaling with Clandestine Channels 11–141

11.11.10.1 Intentionally I: Banging on the Walls...................... 11–141

11.11.10.2 Intentionally II .. 11–141

11.11.10.3 Unintentionally.. 11–142

11.11.11 It Seems to be Working Just Fine 11–142

11.11.11.1 I Thought it was Secure.. 11–143

11.11.11.2 How Large is the Key Space…Really? 11–144

11.11.11.3 How Long are the Keys? 11–145

11.11.12 Injection For Fun and Profit ... 11–145

11.11.12.1 Injecting a Bogus Alert Message to the Operator...... 11–146
11.11.12.2 	CardSystems Exposes 40,000,000 Credit Card Records to

SQL Injection... 11–146
11.11.13 Hazards of Rarely-Used Components 11–148

11.11.14 A Thorough System Penetration Job 11–148

11.11.15 Framing Enigma .. 11–149

Exercises..11–151
Glossary for Chapter 11 ...11–163
Index of Chapter 11 ...11–169

Last chapter page 11–171

Overview
Secure computer systems ensure that users’ privacy and possessions are protected against
malicious and inquisitive users. Security is a broad topic, ranging from issues such as not
allowing your friend to read your files to protecting a nation’s infrastructure against
attacks. Defending against an adversary is a negative goal. The designer of a computer
system must ensure that an adversary cannot breach the security of the system in any way.
Furthermore, the designer must make it difficult for an adversary to side-step the security
mechanism; one of the simplest ways for an adversary to steal confidential information
is to bribe someone on the inside.

Because security is a negative goal, it requires designers to be careful and pay attention
to the details. Each detail might provide an opportunity for an adversary to breach the
system security. Fortunately, many of the previously-encountered design principles can
also guide the designer of secure systems. For example, the principles of the safety net
approach from Chapter 8[on-line], be explicit (state your assumptions so that they can be
reviewed) and design for iteration (assume you will make errors), apply equally, or perhaps
even with more force, to security.

The conceptual model for protecting computer systems against adversaries is that
some agent presents to a computer system a claimed identity and requests the system to

Saltzer & Kaashoek Ch. 11, p. 4	 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–5

perform some specified action. To achieve security, the system must obtain trustworthy
answers to the following three questions before performing the requested action:

1. 	Authenticity: Is the agent’s claimed identity authentic? (Or, is someone
masquerading as the agent?)

2. 	Integrity: Is this request actually the one the agent made? (Or, did someone tamper
with it?)

3. 	Authorization: Has a proper authority granted permission to this agent to perform
this action?

The primary underpinning of security of a system is the set of mechanisms that ensures
that these questions are answered satisfactorily for every action that the system performs.
This idea is known as the principle of

Complete mediation

For every requested action, check authenticity, integrity, and authorization.

To protect against inside attacks (adversaries who are actually users that have the
appropriate permissions, but abuse them) or adversaries who successfully break the secu
rity mechanisms, the service must also maintain audit trails of who used the system, what
authorization decisions have been made, etc. This information may help determine who
the adversary was after the attack, how the adversary breached the security of the system,
and bring the adversary to justice. In the end, a primary instrument to deter adversaries
is to increase the likelihood of detection and punishment.

The next section provides a general introduction to security. It discusses possible
threats (Section 11.1.1), why security is a negative goal (Section 11.1.2), presents the
safety net approach (Section 11.1.3), lays out principles for designing secure computer
systems (Section 11.1.4), the basic model for structuring secure computer systems (Sec
tion 11.1.6), an implementation strategy based on minimizing the trusted computing
base (Section 11.1.7), and concludes with a road map for the rest of this chapter (Section
11.1.8). The rest of the chapter works the ideas introduced in the next section in more
detail, but by no means provides a complete treatment of computer security. Computer
security is an active area of research with many open problems and the interested reader
is encouraged to explore the research literature to get deeper into the topic.

11.1 Introduction to Secure Systems
In Chapter 4 we saw how to divide a computer system into modules so that errors don’t
propagate from one module to another. In the presentation, we assumed that errors hap
pen unintentionally: modules fail to adhere to their contracts because users make mistakes
or hardware fails accidently. As computer systems become more and more deployed for

Saltzer & Kaashoek Ch. 11, p. 5	 June 24, 2009 12:29 am

11–6 CHAPTER 11 Information Security

mission-critical applications, however, we require computer systems that can tolerate
adversaries. By an adversary we mean a entity that breaks into systems intentionally, for
example, to steal information from other users, to blackmail a company, to deny other
users access to services, to hack systems for fun or fame, to test the security of a system,
etc. An adversary encompasses a wide range of bad guys as well as good guys (e.g., people
hired by an organization to test the security of that organization’s computers systems).
An adversary can be a single person or a group collaborating to break the protection.

Almost all computers are connected to networks, which means that they can be
attacked by an adversary from any place in the world. Not only must the security mech
anism withstand adversaries who have physical access to the system, but the mechanism
also must withstand a 16-year old wizard sitting behind a personal computer in some
country one has never heard of. Since most computers are connected through public net
works (e.g., the Internet), defending against a remote adversary is particularly
challenging. Any person who has access to the public network might be able to compro
mise any computer or router in the network.

Although, in most secure systems, keeping adversaries from doing bad things is the
primary objective, there is usually also a need to provide users with different levels of
authority. Consider electronic banking. Certainly, a primary objective must be to ensure
that no one can steal money from accounts, modify transactions performed over the pub
lic networks, or do anything else bad. But in addition, a banking system must enforce
other security constraints. For example, the owner of an account should be allowed to
withdraw money from the account, but the owner shouldn’t be allowed to withdraw
money from other accounts. Bank personnel, though, (under some conditions) should
be allowed to transfer money between accounts of different users and view any account.
Some scheme is needed to enforce the desired authority structure.

In some applications no enforcement mechanism internal to the computer system
may be necessary. For instance, an externally administered code of ethics or other mech
anisms outside of the computer system may protect the system adequately. On the other
hand, with the rising importance of computers and the Internet many systems require
some security plan. Examples include file services storing private information, Internet
stores, law enforcement information systems, electronic distribution of proprietary soft
ware, on-line medical information systems, and government social service data
processing systems. These examples span a wide range of needs for organizational and
personal privacy.

Not all fields of study use the terms “privacy,” “security,” and “protection” in the
same way. This chapter adopts definitions that are commonly encountered in the com
puter science literature. The traditional meaning of the term privacy is the ability of an
individual to determine if, when, and to whom personal information is to be released (see
Sidebar 11.1). The term security describes techniques that protect information and infor
mation systems against unauthorized access or modification of information, whether in
storage, processing, or transit, and against denial of service to authorized users. In this
chapter the term protection is used as a synonym for security.

Saltzer & Kaashoek Ch. 11, p. 6 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–7

Sidebar 11.1: Privacy The definition of privacy (the ability of an individual to determine if,
when, and to whom personal information is to be released) comes from the 1967 book Privacy
and Freedom by Alan Westin [Suggestions for Further Reading 1.1.6]. Some privacy advocates
(see for example Suggestions for Further Reading 11.1.2) suggest that with the increased
interconnectivity provided by changing technology, Westin's definition now covers only a
subset of privacy, and is in need of update. They suggest this broader definition: the ability of
an individual to decide how and to what extent personal information can be used by others.

This broader definition includes the original concept, but it also encompasses control over use
of information that the individual has agreed to release, but that later can be systematically
accumulated from various sources such as public records, grocery store frequent shopper cards,
Web browsing logs, on-line bookseller records about what books that person seems interested
in, etc.. The reasoning is that modern network and data mining technology add a new
dimension to the activities that can constitute an invasion of privacy. The traditional definition
implied that privacy can be protected by confidentiality and access control mechanisms; the
broader definition implies adding accountability for use of information that the individual has
agreed to release.

A common goal in a secure system is to enforce some privacy policy. An example of
a policy in the banking system is that only an owner and selected bank personnel should
have access to that owner’s account. The nature of a privacy policy is not a technical
question, but a social and political question. To make progress without having to solve
the problem of what an acceptable policy is, we focus on the mechanisms to enforce pol
icies. In particular, we are interested in mechanisms that can support a wide variety of
policies. Thus, the principle separate mechanism from policy is especially important in
design of secure systems.

11.1.1 Threat Classification

The design of any security system starts with identifying the threats that the system
should withstand. Threats are potential security violations caused either by a planned
attack by an adversary or unintended mistakes by legitimate users of the system. The
designer of a secure computer system must be consider both.

There are three broad categories of threats:

1. 	Unauthorized information release: an unauthorized person can read and take
advantage of information stored in the computer or being transmitted over
networks. This category of concern sometimes extends to “traffic analysis,” in
which the adversary observes only the patterns of information use and from those
patterns can infer some information content.

2. 	Unauthorized information modification: an unauthorized person can make
changes in stored information or modify messages that cross a network—an

Saltzer & Kaashoek Ch. 11, p. 7	 June 24, 2009 12:29 am

11–8 CHAPTER 11 Information Security

adversary might engage in this behavior to sabotage the system or to trick the
receiver of a message to divulge useful information or take unintended action. This
kind of violation does not necessarily require that the adversary be able to see the
information it has changed.

3. 	Unauthorized denial of use: an adversary can prevent an authorized user from
reading or modifying information, even though the adversary may not be able to
read or modify the information. Causing a system “crash,” flooding a service with
messages, or firing a bullet into a computer are examples of denial of use. This
attack is another form of sabotage.

In general, the term “unauthorized” means that release, modification, or denial of use
occurs contrary to the intent of the person who controls the information, possibly even
contrary to the constraints supposedly enforced by the system.

As mentioned in the overview, a complication in defending against these threats is
that the adversary can exploit the behavior of users who are legitimately authorized to use
the system but are lax about security. For example, many users aren’t security experts and
put their computers at risk through surfing the Internet and downloading untrusted,
third-party programs voluntarily or even without realizing it. Some users bring their own
personal devices and gadgets into their work place; these devices may contain malicious
software. Yet other users allow friends and family members to use computers at institu
tions for personal ends (e.g., storing personal content or playing games). Some employees
may be disgruntled with their company and may be willing to collaborate with an
adversary.

A legitimate user acting as an adversary is difficult to defend against because the
adversary’s actions will appear to be legitimate. Because of this difficulty, this threat has
its own label, the insider threat.

Because there are many possible threats, a broad set of security techniques exists. The
following list just provides a few examples (see Suggestions for Further Reading 1.1.7 for
a wider range of many more examples):

• 	making credit card information sent over the Internet unreadable by anyone
other than the intended recipients,

• 	 verifying the claimed identity of a user, whether local or across a network,
• 	 labeling files with lists of authorized users,
• 	 executing secure protocols for electronic voting or auctions,
• 	 installing a router (in security jargon called a firewall) that filters traffic between a

private network and a public network to make it more difficult for outsiders to
attack the private network,

• 	 shielding the computer to prevent interception and subsequent interpretation of
electromagnetic radiation,

• 	 locking the room containing the computer,
• 	 certifying that the hardware and software are actually implemented as intended,

Saltzer & Kaashoek Ch. 11, p. 8	 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–9

• 	providing users with configuration profiles to simplify configuration decisions
with secure defaults,

• 	 encouraging legitimate users to follow good security practices,
• 	monitoring the computer system, keeping logs to provide audit trails, and

protecting the logs from tampering.

11.1.2 Security is a Negative Goal

Having a narrow view of security is dangerous because the objective of a secure system is
to prevent all unauthorized actions. This requirement is a negative kind of requirement.
It is hard to prove that this negative requirement has been achieved, for one must dem
onstrate that every possible threat has been anticipated. Therefore, a designer must take a
broad view of security and consider any method in which the security scheme can be pen
etrated or circumvented.

To illustrate the difficulty, consider the positive goal, “Alice can read file x.” It is easy
to test if a designer has achieved the goal (we ask Alice to try to read the file). Further
more, if the designer failed, Alice will probably provide direct feedback by sending the
designer a message “I can't read x!” In contrast, with a negative goal, such as “Lucifer can
not read file x”, the designer must check that all the ways that the adversary Lucifer might
be able to read x are blocked, and it's likely that the designer won't receive any direct
feedback if the designer slips up. Lucifer won't tell the designer because Lucifer has no
reason to and it may not even be in Lucifer’s interest.

An example from the field of biology illustrates nicely the difference between proving
a positive and proving a negative. Consider the question “Is a species (for example, the
Ivory-Billed Woodpecker) extinct?’’ It is generally easy to prove that a species exists; just
exhibit a live example. But to prove that it is extinct requires exhaustively searching the
whole world. Since the latter is usually difficult, the most usual answer to proving a neg
ative is “we aren’t sure”.*

The question “Is a system secure?” has these same three possible outcomes: insecure,
secure, or don’t know. In order to prove a system is insecure, one must find just one
example of a security hole. Finding the hole is usually difficult and typically requires sub
stantial expertise, but once one hole is found it is clear that the system is insecure. In
contrast, to prove that a system is secure, one has to show that there is no security hole
at all. Because the latter is so difficult, the typical outcome is “we don’t know of any
remaining security holes, but we are certain that there are some.”

Another way of appreciating the difficulty of achieving a negative goal is to model a
computer system as a state machine with states for all the possible configurations in
which the system can be and with links between states for transitions between configu
rations. As shown in Figure 11.1, the possible states and links form a graph, with the

* The woodpecker was believed to be extinct, but in 2005 a few scientists claimed to have found
the bird in Arkansas after a kayaker caught a glimpse in 2004; if true, it is the first confirmed sighting
in 60 years.

Saltzer & Kaashoek Ch. 11, p. 9	 June 24, 2009 12:29 am

11–10 CHAPTER 11 Information Security

...
...

...
...Current Bad

FIGURE 11.1

Modeling a computer systems as a state machine. An adversary’s goal is to get the system into
a state, labeled “Bad”, that gives the adversary unauthorized access.To prevent the adversary
from succeeding, all paths leading to the bad state must be blocked off because the adversary
needs to find only one path to succeed.

states as nodes and possible transitions as edges. Assume that the system is in some cur
rent state. The goal of an adversary is to force the system from the current state to a state,
labeled “Bad” in the figure, that gives the adversary unauthorized access. To defend
against the adversary, the security designers must identify and block every path that leads
to the bad state. But the adversary needs to find only one path from the current state to
the bad state.

11.1.3 The Safety Net Approach

To successfully design systems that satisfy negative goals, this chapter adopts the safety
net approach of Chapter 8[on-line], which in essence guides a designer to be paranoid—
never assume the design is right. In the context of security, the two safety net principles
be explicit and design for iteration reinforce this paranoid attitude:

1. 	Be explicit: Make all assumptions explicit so that they can be reviewed. It may
require only one hole in the security of the system to penetrate it. The designer
must therefore consider any threat that has security implications and make explicit
the assumption on which the security design relies. Furthermore, make sure that
all assumptions on which the security of the system is based are apparent at all
times to all participants. For example, in the context of protocols, the meaning of
each message should depend only on the content of the message itself, and should
not be dependent on the context of the conversation. If the content of a message
depends on its context, an adversary might be able to break the security of a
protocol by tricking a receiver into interpreting the message in a different context.

Saltzer & Kaashoek Ch. 11, p. 10	 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–11

2. 	Design for iteration: Assume you will make errors. Because the designer must
assume that the design itself will contain flaws, the designer must be prepared to
iterate the design. When a security hole is discovered, the designer must review the
assumptions, if necessary adjust them, and repair the design. When a designer
discovers an error in the system, the designer must reiterate the whole design and
implementation process.

The safety net approach implies several requirements for the design of a secure
system:

• 	 Certify the security of the system. Certification involves verifying that the design
matches the intended security policy, the implementation matches the design, and
the running system matches the implementation, followed up by end-to-end tests
by security specialists looking for errors that might compromise security.
Certification provides a systematic approach to reviewing the security of a system
against the assumptions. Ideally, certification is performed by independent
reviewers, and, if possible, using formal tools. One way to make certification
manageable is to identify those components that must be trusted to ensure security,
minimize their number, and build a wall around them. Section 11.1.7 discusses
this idea, known as the trusted computing base, in more detail.

• 	 Maintain audit trails of all authorization decisions. Since the designer must assume
that legitimate users might abuse their permissions or an adversary may be
masquerading as a legitimate user, the system should maintain an tamper-proof log
(so that an adversary cannot erase records) of all authorization decisions made. If,
despite all security mechanisms, an adversary (either from the inside or from the
outside) succeeds in breaking the security of the system, the log might help in
forensics. A forensics expert may be able to use the log to collect evidence that
stands in court and help establish the identity of the adversary so that the adversary
can be prosecuted after the fact. The log also can be used as a source of feedback
that reveals an incorrect assumption, design, or implementation.

• 	 Design the system for feedback. An adversary is unlikely to provide feedback when
compromising the system, so it is up to the designer to create ways to obtain
feedback. Obtaining feedback starts with stating the assumptions explicitly, so the
designer can check the designed, implemented, and operational system against the
assumptions when a flaw is identified. This method by itself doesn’t identify
security weaknesses, and thus the designer must actively look for potential
problems. Methods include reviewing audit logs and running programs that alert
system administrators about unexpected behavior, such as unusual network traffic
(e.g., many requests to a machine that normally doesn’t receive many requests),
repeated login failures, etc. The designer should also create an environment in
which staff and customers are not blamed for system compromises, but instead are
rewarded for reporting them, so that they are encouraged to report problems

Saltzer & Kaashoek Ch. 11, p. 11	 June 24, 2009 12:29 am

11–12 CHAPTER 11 Information Security

instead of hiding them. Designing for feedback reduces the chance that security
holes will slip by unnoticed. Anderson illustrates well through a number of real-
world examples how important it is to design for feedback [Suggestions for Further
Reading 11.5.3].

As part of the safety net approach, a designer must consider the environment in which
the system runs. The designer must secure all communication links (e.g., dial-up modem
lines that would otherwise bypass the firewall that filters traffic between a private net
work and a public network), prepare for malfunctioning equipment, find and remove
back doors that create security problems, provide configuration settings for users that are
secure by default, and determine who is trustworthy enough to own a key to the room
that protects the most secure part of the system. Moreover, the designer must protect
against bribes and worry about disgruntled employees. The security literature is filled
with stories of failures because the designers didn't take one of these issues into account.

As another part of the safety net approach, the designer must consider the dynamics
of use. This term refers to how one establishes and changes the specification of who may
obtain access to what. For example, Alice might revoke Bob’s permission to read file “x.”
To gain some insight into the complexity introduced by changes to access authorization,
consider again the question, “Is there any way that Lucifer could obtain access to file x?”
One should check not only whether Lucifer has access to file x, but also whether Lucifer
may change the specification of file x’s accessibility. The next step is to see if Lucifer can
change the specification of who may change the specification of file x’s accessibility, etc.

Another problem of dynamics arises when the owner revokes a user’s access to a file
while that file is being used. Letting the previously authorized user continue until the
user is “finished” with the information may be unacceptable if the owner has suddenly
realized that the file contains sensitive data. On the other hand, immediate withdrawal
of authorization may severely disrupt the user or leave inconsistent data if the user was
in the middle of an atomic action. Provisions for the dynamics of use are at least as
important as those for static specification of security.

Finally, the safety net approach suggests that a designer should never believe that a
system is completely secure. Instead, one must design systems that defend in depth by
using redundant defenses, a strategy that the Russian army deployed successfully for cen
turies to defend Russia. For example, a designer might have designed a system that
provides end-to-end security over untrusted networks. In addition, the designer might
also include a firewall between the trusted and untrusted network for network-level secu
rity. The firewall is in principle completely redundant with the end-to-end security
mechanisms; if the end-to-end security mechanism works correctly, there is no need for
network-level security. For an adversary to break the security of the system, however, the
adversary has to find flaws in both the firewall and in the end-to-end security mecha
nisms, and be lucky enough that the first flaw allows exploitation of the second.

The defense-in-depth design strategy offers no guarantees, but it seems to be effective
in practice. The reason is that conceptually the defense-in-depth strategy cuts more edges

Saltzer & Kaashoek Ch. 11, p. 12 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–13

in the graph of all possible paths from a current state to some undesired state. As a result,
an adversary has fewer paths available to get to and exploit the undesired state.

11.1.4 Design Principles

In practice, because security is a negative goal, producing a system that actually does pre
vent all unauthorized acts has proved to be extremely difficult. Penetration exercises
involving many different systems all have shown that users can obtain unauthorized
access to these systems. Even if designers follow the safety net approach carefully, design
and implementation flaws provide paths that circumvent the intended access constraints.
In addition, because computer systems change rapidly or are deployed in new environ
ments for which they were not designed originally, new opportunities for security
compromises come about. Section 11.11 provides several war stories about security
breaches.

Design and construction techniques that systematically exclude flaws are the topic of
much research activity, but no complete method applicable to the design of computer
systems exists yet. This difficulty is related to the negative quality of the requirement to
prevent all unauthorized actions. In the absence of such methodical techniques, experi
ence has provided several security principles to guide the design towards minimizing the
number of security flaws in an implementation. We discuss these principles next.

The design should not be secret:

Open design principle

Let anyone comment on the design. You need all the help you can get.

Violation of the open design principle has historically proven to almost always lead to
flawed designs. The mechanisms should not depend on the ignorance of potential adver
saries, but rather on the possession of specific, more easily protected, secret keys or
passwords. This decoupling of security mechanisms from security keys permits the
mechanisms to be examined by many reviewers without concern that the review may
itself compromise the safeguards. In addition, any skeptical user must be able to review
that the system is adequate for the user’s purpose. Finally, it is simply not realistic to
maintain secrecy of any system that receives wide distribution. However, the open design
principle can conflict with other goals, which has led to numerous debates; Sidebar 11.2
summarizes some of the arguments.

The right people must perform the review because spotting security holes is difficult.
Even if the design and implementation are public, that is an insufficient condition for
spotting security problems. For example, standard committees are usually open in prin
ciple but their openness sometimes has barriers that cause the proposed standard not to
be reviewed by the right people. To participate in the design of the WiFi Wired Equiv
alent Privacy standard required committee members to pay a substantial fee, which
apparently discouraged security researchers from participating. When the standard was

Saltzer & Kaashoek Ch. 11, p. 13 June 24, 2009 12:29 am

CHAPTER 11 Information Security11–14

Sidebar 11.2: Should designs and vulnerabilities be public? The debate of closed versus
open designs has been raging literally for ages, and is not unique to computer security. The
advocates of closed designs argue that making designs public helps the adversaries, so why do
it? The advocates of open designs argue that closed designs don’t really provide security because
in the long run it is impossible to keep a design secret. The practical result of attempted secrecy
is usually that the bad guys know about the flaws but the good guys don’t. Open design
advocates disparage closed designs by describing them as “security through obscurity”.
On the other hand, the open design principle can conflict with the desire to keep a design and
its implementation proprietary for commercial or national security reasons. For example,
software companies often do not want a competitor to review their software in fear that the
competitor can easily learn or copy ideas. Many companies attempt to resolve this conflict by
arranging reviews, but restricting who can participate in the reviews. This approach has the
danger that not the right people are performing the reviews.
Closely related to the question whether designs should be public or not is the question whether
vulnerabilities should be made public or not? Again, the debate about the right answer to this
question has been raging for ages, and is perhaps best illustrated by the following quote from
a 1853 book* about old-fashioned door locks:

 A commercial, and in some respects a social doubt has been started within the last year
or two, whether or not it is right to discuss so openly the security or insecurity of locks.
Many well-meaning persons suppose that the discussion respecting the means for
baffling the supposed safety of locks offers a premium for dishonesty, by showing
others how to be dishonest. This is a fallacy. Rogues are very keen in their profession,
and know already much more than we can teach them respecting their several kinds of
roguery.

 Rogues knew a good deal about lock-picking long before locksmiths discussed it
among themselves, as they have lately done. If a lock, let it have been made in whatever
country, or by whatever maker, is not so inviolable as it has hitherto been deemed to
be, surely it is to the interest of honest persons to know this fact, because the dishonest
are tolerably certain to apply the knowledge practically; and the spread of the
knowledge is necessary to give fair play to those who might suffer by ignorance.

 It cannot be too earnestly urged that an acquaintance with real facts will, in the end,
be better for all parties.

Computer security experts generally believe that one should publish vulnerabilities for the
reasons stated by Hobbs and that users should know if the system they are using has a problem
so they can decide whether or not they care. Companies, however, are typically reluctant to
disclose vulnerabilities. For example, a bank has little incentive to advertise successful
compromises because it may scare away customers.

(sidebar continues)

* A.C Hobbs (Charles Tomlinson, ed.), Locks and Safes: The Construction of Locks. Virtue &
Co., London, 1853 (revised 1868).

Saltzer & Kaashoek Ch. 11, p. 14 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–15

To handle this tension, many governments have created laws and organizations that make
vulnerabilities public. In California companies must inform their customers if an adversary
might have succeeded in stealing customer priviate information (e.g., a social security number).
The U.S federal government has created the Computer Emergency Response Team (CERT) to
document vulnerabilities in software systems and help with the response to these vulnerabilities
(see www.cert.org). When CERT learns about a new vunerability, it first notifies the vendor,
then it waits for some time for the vendor to develop a patch, and then goes public with the
vulnerability and the patch.

finalized and security researchers began to examine the standard, they immediately found
several problems, one of which is described on page 11–51.

Since it is difficult to keep a secret:

Minimize secrets

Because they probably won’t remain secret for long.

Following this principle has the following additional advantage. If the secret is com
prised, it must be replaced; if the secret is minimal, then replacing the secret is easier.

An open design that minimizes secrets doesn’t provide security itself. The primary
underpinning of the security of a system is, as was mentioned on page 11–5, the principle
of complete mediation.This principle forces every access to be explicitly authenticated and
authorized, including ones for initialization, recovery, shutdown, and maintenance. It
implies that a foolproof method of verifying the authenticity of the origin and data of
every request must be devised. This principle applies to a service mediating requests, as
well as to a kernel mediating supervisor calls and a virtual memory manager mediating a
read request for a byte in memory. This principle also implies that proposals for caching
results of an authority check should be examined skeptically; if a change in authority
occurs, cached results must be updated.

The human engineering principle of least astonishment applies especially to mediation.
The mechanism for authorization should be transparent enough to a user that the user
has a good intuitive understanding of how the security goals map to the provided security
mechanism. It is essential that the human interface be designed for ease of use, so that
users routinely and automatically apply the security mechanisms correctly. For example,
a system should provide intuitive, default settings for security mechanisms so that only
the appropriate operations are authorized. If a system administrator or user must first
configure or jump through hoops to use a security mechanism, the user won’t use it.
Also, to the extent that the user’s mental image of security goals matches the security
mechanisms, mistakes will be minimized. If a user must translate intuitive security objec-

Saltzer & Kaashoek Ch. 11, p. 15 June 24, 2009 12:29 am

11–16 CHAPTER 11 Information Security

tives into a radically different specification language, errors are inevitable. Ideally,
security mechanisms should make a user’s computer experience better instead of worse.

Another widely applicable principle, adopt sweeping simplifications, also applies to
security. The fewer mechanisms that must be right to ensure protection, the more likely
the design will be correct:

Economy of mechanism

The less there is, the more likely you will get it right.

Designing a secure system is difficult because every access path must be considered to
ensure complete mediation, including ones that are not exercised during normal opera
tion. As a result, techniques such as line-by-line inspection of software and physical
examination of hardware implementing security mechanisms may be necessary. For such
techniques to be successful, a small and simple design is essential.

Reducing the number of mechanisms necessary helps with verifying the security of a
computer system. For the ones remaining, it would be ideal if only a few are common to
more than one user and depended on by all users because every shared mechanism might
provide unintended communication paths between users. Further, any mechanism serv
ing all users must be certified to the satisfaction of every user, a job presumably harder
than satisfying only one or a few users. These observations lead to the following security
principle:

Minimize common mechanism

Shared mechanisms provide unwanted communication paths.

This principle helps reduce the number of unintended communication paths and
reduces the amount of hardware and software on which all users depend, thus making it
easier to verify if there are any undesirable security implications. For example, given the
choice of implementing a new function as a kernel procedure shared by all users or as a
library procedure that can be handled as though it were the user’s own, choose the latter
course. Then, if one or a few users are not satisfied with the level of certification of the
function, they can provide a substitute or not use it at all. Either way, they can avoid
being harmed by a mistake in it. This principle is an end-to-end argument.

Complete mediation requires that every request be checked for authorization and
only authorized requests be approved. It is important that requests are not authorized
accidently. The following security principle helps reduce such mistakes:

Fail-safe defaults

Most users won’t change them, so make sure that defaults do something safe.

Saltzer & Kaashoek Ch. 11, p. 16 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–17

Access decisions should be based on permission rather than exclusion. This principle
means that lack of access should be the default, and the security scheme lists conditions
under which access is permitted. This approach exhibits a better failure mode than the
alternative approach, where the default is to permit access. A design or implementation
mistake in a mechanism that gives explicit permission tends to fail by refusing permis
sion, a safe situation that can be quickly detected. On the other hand, a design or
implementation mistake in a mechanism that explicitly excludes access tends to fail by
allowing access, a failure that may long go unnoticed in normal use.

To ensure that complete mediation and fail-safe defaults work well in practice, it is
important that programs and users have privileges only when necessary. For example,
system programs or administrators who have special privileges should have those privi
leges only when necessary; when they are doing ordinary activities the privileges should
be withdrawn. Leaving them in place just opens the door to accidents. These observa
tions suggest the following security principle:

Least privilege principle

Don’t store lunch in the safe with the jewels.

This principle limits the damage that can result from an accident or an error. Also, if
fewer programs have special privileges, less code must be audited to verify the security of
a system. The military security rule of “need-to-know” is an example of this principle.

Security experts sometimes use alternative formulations that combine aspects of sev
eral principles. For example, the formulation “minimize the attack surface” combines
aspects of economy of mechanism (a narrow interface with a simple implementation pro
vides fewer opportunities for designer mistakes and thus provides fewer attack
possibilities), minimize secrets (few opportunies to crack secrets), least privilege (run
most code with few privileges so that a successful attack does little harm), and minimize
common mechanism (reduce the number of opportunities of unintended communica
tion paths).

11.1.5 A High d(technology)/dt Poses Challenges For Security

Much software on the Internet and on personal computers fails to follow these princi
ples, even though most of these principles were understood and articulated in the 1970s,
before personal computers and the Internet came into existence. The reasons why they
weren’t followed are different for the Internet and personal computers, but they illustrate
how difficult it is to achieve security when the rate of innovation is high.

When the Internet was first deployed, software implementations of the cryptographic
techniques necessary to authenticate and protect messages (see Section 11.2 and Section
11.1) were considered but would have increased latency to unacceptable levels. Hard
ware implementations of cryptographic operations at that time were too expensive, and
not exportable because the US government enforced rules to limit the use of cryptogra-

Saltzer & Kaashoek Ch. 11, p. 17 June 24, 2009 12:29 am

11–18 CHAPTER 11 Information Security

phy. Since the Internet was originally used primarily by academics—a mostly
cooperative community—the resulting lack of security was initially not a serious defect.

In 1994 the Internet was opened to commercial activities. Electronic stores came into
existence, and many more computers storing valuable information came on-line. This
development attracted many more adversaries. Suddenly, the designers of the Internet
were forced to provide security. Because security was not part of the initial design plan,
security mechanisms today have been designed as after-the-fact additions and have been
provided in an ad-hoc fashion instead of following an overall plan based on established
security principles.

For different historical reasons, most personal computers came with little internal
security and only limited stabs at network security. Yet today personal computers are
almost always attached to networks where they are vulnerable. Originally, personal com
puters were designed as stand-alone devices to be used by a single person (that’s why they
are called personal computers). To keep the cost low, they had essentially no security
mechanisms, but because they were used stand-alone, the situation was acceptable. With
the arrival of the Internet, the desire to get on-line exposed their previously benign secu
rity problems. Furthermore, because of rapid improvements in technology, personal
computers are now the primary platform for all kinds of computing, including most
business-related computing. Because personal computers now store valuable informa
tion, are attached to networks, and have minimal protection, personal computers have
become a prime target for adversaries.

The designers of the personal computer didn’t originally foresee that network access
would quickly become a universal requirement. When they later did respond to security
concerns, the designers tried to add security mechanism quickly. Just getting the hard
ware mechanisms right, however, took multiple iterations, both because of blunders and
because they were after-the-fact add-ons. Today, designers are still trying to figure out
how to retrofit the existing personal-computer software and to configure the default set
tings right for improved security, while they are also being hit with requirements for
improved security to handle denial-of-service attacks, phishing attacks*, viruses, worms,
malware, and adversaries who try to take over machines without being noticed to create
botnets (see Sidebar 11.3). As a consequence, there are many ad hoc mechanisms found
in the field that don’t follow the models or principles suggested in this chapter.

11.1.6 Security Model

Although there are many ways to compromise the security of a system, the conceptual
model to secure a system is surprisingly simple. To be secure, a system requires complete
mediation: the system must mediate every action requested, including ones to configure
and manage the system. The basic security plan then is that for each requested action the

* Jargon term for an attack in which an adversary lures a victim to Web site controlled by the adver
sary; for an example see Suggestions for Further Reading 11.6.6.

Saltzer & Kaashoek Ch. 11, p. 18 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–19

Sidebar 11.3: Malware: viruses, worms, trojan horses, logic bombs, bots, etc. There is a
community of programmers that produces malware, software designed to run on a computer
without the computer owner’s intent. Some malware is created as a practical joke, other
malware is designed to make money or to sabotage someone; Hafner and Markoff profile a few
early high-profile cases of computer break-ins and the perpetrator’s motivation [Suggestions for
Further Reading 1.3.5]. More recently, there is an industry in creating malware that silently
turns a user’s computer into a bot, a computer controlled by an adversary, which is then used
by the adversary to send unsolicited e-mail (SPAM) on behalf of paying customers, which
generates a revenue stream for the adversary [Suggestions for Further Reading 11.6.5].*

Malware uses a combinations of techniques to take control of a user’s computer. These
techniques include ways to install malware on a user’s computer, ways to arrange that the
malware will run on the user’s computer, ways to replicate the malware on other computers,
and ways to do perfidious things. Some of the techniques rely on users naïvety while others rely
on innovative ideas to exploit errors in the software running on the user’s computer. As an
example of both, in 2000 an adversary constructed the “ILOVEYOU” virus, an e-mail message
with a malicious executable attachment. The adversary sent the e-mail to a few recipients.
When a recipient opened the executable e-mail (attracted by “ILOVEYOU” in the e-mail’s
subject), the malicious attachment read the recipient’s address book, and sent itself to the users
in the address book. So many users opened the e-mail that it spread rapidly and overwhelmed
e-mail servers at many institutions.

The Morris worm [Suggestions for Further Reading 11.6.1], created in 1984, is an example of
malware that relies only on clever ways to exploit errors in software. The worm exploited
various weaknesses in remote computers, among them a buffer overrun (see Sidebar 11.4) in
an e-mail server (sendmail) running on the UNIX operating system, which allowed it to install
and run itself on the compromised computer. There it looked for network addresses of
computers in configuration files, and then penetrated those computers, and so on. According
to its creator it was not intended to create damage but a design error caused it to effectively
create a denial-of-service attack. The worm spread so rapidly, infecting some computers
multiple times, that it effectively shut down parts of the Internet.

The popular jargon attaches colorful labels to describe different types of malware such as virus,
worm, trojan horse, logic bomb, drive-by download, etc., and new ones appear as new types of
malware show up. These labels don’t correspond to precise, orthogonal technical concepts, but
combine various malware features in different ways. All of them, however, exploit some
weakness in the security of a computer, and the techniques described in this chapter are also
relevant in containing malware.

* Problem set 47 explores a potential stamp-based solution.

Saltzer & Kaashoek Ch. 11, p. 19 June 24, 2009 12:29 am

11–20 CHAPTER 11 Information Security

agent requesting the operation proves its identity to the system and then the system
decides if the agent is allowed to perform that operation.

This simple model covers a wide range of instances of systems. For example, the agent
may be a client in a client/service application, in which case the request is in the form of
a message to a service. For another example, the agent may be a thread referring to virtual
memory, in which case the request is in the form of a LOAD or STORE to a named memory
cell. In each of these cases, the system must establish the identity of the agent and decide
whether to perform the request or not. If all requests are mediated correctly, then the job
of the adversary becomes much harder. The adversary must compromise the mediation
system, launch an insider attack, or is limited to denial-of-service attacks.

The rest of this section works out the mediation model in more detail, and illustrates
it with various examples. Of course a simple conceptual model cannot cover all attacks
and all details. And, unfortunately, in security, the devil is often in the details of the
implementation: does the system to be secure implement the model for all its operations
and is the implementation correct? Nevertheless, the model is helpful in framing many
security problems and then addressing them.

Agents perform on behalf of some entity that corresponds to a person outside the
computer system; we call the representation of such an entity inside the computer system
a principal. The principal is the unit of authorization in a computer system, and therefore
also the unit of accountability and responsibility. Using these terms, mediating an action
is asking the question, “Is the principal who requested the action authorized to perform
the action?”

The basic approach to mediating every requested action is to ensure that there is really
only one way to request an action. Conceptually, we want to build a wall around the sys
tem with one small opening through which all requested actions pass. Then, for every
requested action, the system must answer “Should I perform the action?”. To do so a sys
tem is typically decomposed in two parts: one part, called a guard, that specializes in
deciding the answer to the question and a second part that performs the action. (In the
literature, a guard that provides complete mediation is usually called a reference monitor.)

The guard can clarify the question, “Is the principal who originated the requested
action allowed to perform the action?” by obtaining answers to the three subquestions of
complete mediation (see Figure 11.2). The guard verifies that the message containing the
request is authentic (i.e., the request hasn’t been modified and that the principal is
indeed the source of the request), and that the principal is permitted to perform the
requested action on the object (authorization). If so, the guard allows the action; other
wise, it denies the request. The guard also logs all decisions for later audits

The first two (has the request been modified and what is the source of the request) of
the three mediation questions fall in the province of authentication of the request. Using
an authentication service the guard verifies the identity of the principal. Using additional
information, sometimes part of the request but sometimes communicated separately, the
guard verifies the integrity of the request. After answering the authenticity questions, the
guard knows who the principal associated with the request is and that no adversary has
modified the request.

Saltzer & Kaashoek Ch. 11, p. 20 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–21

Computer system

principal

request

guard
object

perform action

audit trail

module
authorizationauthentication

module

yes/no

log

perform
action

OK

yes/no

authentic? au
th

or
iz

ed
?

FIGURE 11.2

The security model based on complete mediation. The authenticity question includes both ver
ifying the integrity and the source of the request.

The third, and final, question falls in the province of authorization. An authorization
service allows principals to specify which objects they share with whom. Once the guard
has securely established the identity of the principal associated with the request using the
authentication service, the guard verifies with the authorization service that the principal
has the appropriate authorization, and, if so, allows the requested service to perform the
requested action.

The guard approach of complete mediation applies broadly to computer systems.
Whether the messages are Web requests for an Internet store, LOAD and STORE operations
to memory, or supervisor calls for the kernel, in all cases the same three questions must
be answered by the Web service, virtual memory manager, or kernel, respectively. The
implementation of the mechanisms for mediation, however, might be quite different for
each case.

Consider an on-line newspaper. The newspaper service may restrict certain articles to
paying subscribers and therefore must authenticate users and authorize requests, which
often work as follows. The Web browser sends requests on behalf of an Internet user to
the newspaper’s Web server. The guard uses the principal’s subscriber number and an
authenticator (e.g., a password) included in the requests to authenticate the principal
associated with the requests. If the principal is a legitimate subscriber and has authoriza
tion to read the requested article, the guard allows the request and the server replies with
the article. Because the Internet is untrusted, the communications between the Web
browser and the server must be protected; otherwise, an adversary can, for example,

Saltzer & Kaashoek Ch. 11, p. 21 June 24, 2009 12:29 am

11–22 CHAPTER 11 Information Security

obtain the subscriber’s password. Using cryptography one can create a secure channel that
protects the communications over an untrusted network. Cryptography is a branch of
computer science that designs primitives such as ciphers, pseudorandom number gener
ators, and hashes, which can be used to protect messages against a wide range of attacks.

As another example, consider a virtual memory system with one domain per thread.
In this case, the processor issues LOAD and STORE instructions on behalf of a thread to a
virtual memory manager, which checks if the addresses in the instructions fall in the
thread’s domain. Conceptually, the processor sends a message across a bus, containing
the operation (LOAD or STORE) and the requested address. This message is accompanied
with a principal identifier naming the thread. If the bus is a trusted communication link,
then the message doesn’t have to be protected. If the bus isn’t a secure channel (e.g., a
digital rights management application may want to protect against an owner snooping
on the bus to steal the copyrighted content), then the message between the processor and
memory might be protected using cryptographic techniques. The virtual memory man
ager plays the role of a guard. It uses the thread identifier to verify if the address falls in
the thread’s domain and if the thread is authorized to perform the operation. If so, the
guard allows the requested operation, and virtual memory manager replies by reading
and writing the requested memory location.

Even if the mechanisms for complete mediation are implemented perfectly (i.e., there
are no design and implementation errors in the cryptography, password checker, the vir
tual memory manager, the kernel, etc.), a system may still leave opportunities for an
adversary to break the security of the system. The adversary may be able to circumvent
the guard, or launch an insider attack, or overload the system with requests for actions,
thus delaying or even denying legitimate principals access. A designer must be prepared
for these cases—an example of the paranoid design attitude. We discusses these cases in
more detail.

To circumvent the guard, the adversary might create or find another opening in the
system. A simple opening for an adversary might be a dial-up modem line that is not
mediated. If the adversary finds the phone number (and perhaps the password to dial in),
the adversary can gain control over the service. A more sophisticated way to create an
opening is a buffer overrun attack on services written in the C programming language (see
Sidebar 11.4), which causes the service to execute a program under the control of the
adversary, which then creates an interface for the adversary that is not checked by the
system.

As examples of insider attacks, the adversary may be able to guess a principal’s pass
word, may be able to bribe a principal to act on the adversary’s behalf, or may be able to
trick the principal to run the adversary’s program on the principal’s computer with the
principal’s privileges (e.g., the principal opens an executable e-mail attachment sent by
the adversary). Or, the adversary may be a legitimate principal who is disgruntled.

Measures against badly behaving principals are also the final line of defense against
adversaries who successfully break the security of the system, thus appearing to be legit
imate users. The measures include (1) running every requested operation with the least
privilege because that minimizes damage that a legitimate principal can do, (2) maintain-

Saltzer & Kaashoek Ch. 11, p. 22 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–23

Sidebar 11.4: Why are buffer overrun bugs so common? It has become disappointingly
common to hear a news report that a new Internet worm is rapidly spreading, and a little
research on the World-Wide Web usually turns up as one detail that the worm exploits a buffer
overrun bug. The reason that buffer overrun bugs are so common is that some widely used
programming languages (in particular, C and C++) do not routinely check array bounds. When
those languages are used, array bounds checking must be explicitly provided by the
programmer. The reason that buffer overrun bugs are so easily exploited arises from an
unintentional conspiracy of common system design and implementation practices that allow a
buffer overrun to modify critical memory cells.

1. Compilers usually allocate space to store arrays as contiguous memory cells, with the first
element at some starting address and successive elements at higher-numbered addresses.

2. Since there usually isn't any hardware support for doing anything different, most operating
systems allocate a single, contiguous block of address space for a program and its data. The
addresses may be either physical or virtual, but the important thing is that the programming
environment is a single, contiguous block of memory addresses.

3. Faced with this single block of memory, programming support systems typically suballocate
the address block into three regions: They place the program code in low-numbered addresses,
they place static storage (the heap) just above those low-numbered addresses, and they start the
stack at the highest-numbered address and grow it down, using lower addresses, toward the
heap.

These three design practices, when combined with lack of automatic bounds checking, set the
stage for exploitation. For example, historically it has been common for programs written in
the C language to use library programs such as

GETS (character array reference string_buffer)

rather than a more elaborate version of the same program

FGETS (character array reference string_buffer, integer string_length, file stream)

to move character string data from an incoming stream to a local array, identified by the
memory address of string_buffer. The important difference is that GETS reads characters until
it encounters a new-line character or end of file, while FGETS adds an additional stop condition:
it stops after reading string_length characters, thus providing an explicit array bound check.
Using GETS rather than FGETS is an example of Gabriel’s Worse is Better: “it is slightly better to
be simple than to be correct." [Suggestions for Further Reading 1.5.1]

A program that is listening on some Internet port for incoming messages allocates a
string_buffer of size 30 characters, to hold a field from the message, knowing that that field
should never be larger. It copies data of the message from the port into string_buffer, using
GETS An adversary prepares and sends a message in which that field contains a string of, say,
250 characters. GETS overruns string_buffer.

(Sidebar continues)

Saltzer & Kaashoek Ch. 11, p. 23 June 24, 2009 12:29 am

11–24 CHAPTER 11 Information Security

Because of the compiler practice of placing successive array elements of string_buffer in
higher-numbered addresses, if the program placed string_buffer in the stack the overrun
overwrites cells in the stack that have higher-numbered addresses. But because the stack grows
toward lower-numbered addresses, the cells overwritten by the buffer overrun are all older
variables, allocated before string_buffer. Typically, an important older variable is the one that
holds the return point of the currently running procedure. So the return point is vulnerable. A
common exploit is thus to include runnable code in the 250-character string and, knowing
stack offsets, smash the return point stack variable to contain the address of that code. Then,
when the thread returns from the current procedure, it unwittingly transfers control to the
adversary’s code.

By now, many such simple vulnerabilities have been discovered and fixed. But exploiting buffer
overruns is not limited to smashing return points in the stack. Any writable variable that
contains a jump address and that is located adjacent to a buffer in the stack or the heap may be
vulnerable to an overrun of that buffer. The next time that the running thread uses that jump
address, the adversary gains control of that thread. The adversary may not even have to supply
executable code if he or she can cause the jump to go to some existing code such as a library
routine that, with a suitable argument value, can be made to do something bad [Suggestions
for Further Reading 11.6.2]. Such attacks require detailed knowledge of the layout and code
generation methods used by the compiler on the system being attacked, but adversaries can
readily discover that information by examining their own systems at leisure. Problem set 49
explores some of these attacks.

From that discussion one can draw several lessons that invoke security design principles:

1. The root cause of buffer overruns is the use of programming languages that do not provide
the fail-safe default of automatically checking all array references to verify that they do not
exceed the space allocated for the array.

2. Be explicit. One can interpret the problem with GETS to be that it relies on its context, rather
than the program, to tell it exactly what to do. When the context contains contradictions (a
string of one size, a buffer of another size) or ambiguities, the library routine may resolve them
in an unexpected way. There is a trade-off between convenience and explicitness in
programming languages. When security is the goal, a programming language that requires that
the programmer be explicit is probably safer.

3. Hardware architecture features can help minimize the impact of common programming
errors, and thus make it harder for an adversary to exploit them. Consider, for example, an
architecture that provides distinct, hardware-enforced memory segments as described in
Section 5.4.5, using one segment for program code, a second segment for the heap, and a third
segment for the stack. Since different segments can have different read, write, and execute
permissions, the stack and heap segments might disallow executable instructions, while the
program area disallows writing. The principle of least privilege suggests that no region of
memory should be simultaneously writable and executable. If all buffers are in segments that

(Sidebar continues)

Saltzer & Kaashoek Ch. 11, p. 24 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–25

 are not executable, an adversary would find it more difficult to deposit code in the execution
environment. Instead, the adversary may have to resort to methods that exploit code already in
that execution environment. Even better might be to place each buffer in a separate segment,
thus using the hardware to check array bounds.

Hardware for Multics [Suggestions for Further Reading 3.1.4 and 5.4.1], a system
implemented in the 1960s, provided segments. The Multics kernel followed the principle of
least privilege in setting up permissions, and the observed result was that addressing errors were
virtually always caught by the hardware at the instant they occurred, rather than leading to a
later system meltdown. Designers of currently common hardware platforms have recently
modified the memory management unit of these platforms to provide similar features, and
today’s popular operating systems are using the features to provide better protection.

4. Storing a jump address in the midst of writable data is hazardous because it is hard to protect
it against either programming errors or intentional attacks. If an adversary can control the value
of a jump address, there is likely to be some way that the adversary can exploit it to gain control
of the thread. Complete mediation suggests that all such jump values should be validated before
being used. Designers have devised schemes to try to provide at least partial validation. An
example of such a scheme is to store an unpredictable nonce value (a “canary”) adjacent to the
memory cell that holds the jump address and, before using the jump address, verify that the
canary is intact by comparing it with a copy stored elsewhere. Many similar schemes have been
devised, but it is hard to devise one that is foolproof. For the most part these schemes do not
prevent exploits, they just make the adversary’s job harder.

ing an audit trail, of the mediation decisions made for every operation, (3) making copies
and archiving data in secure places, and (4) periodically manually reviewing which prin
cipals should continue to have access and with what privileges. Of course, the archived
data and the audit trail must be maintained securely; an adversary must not be able to
modify the archived data or the audit trail. Measures to secure archives and audit trails
include designing them to be write once and append-only.

The archives and the audit trail can be used to recover from a security breach. If an
inspection of the service reveals that something bad has happened, the archived copies
can be used to restore the data. The audit trail may help in figuring out what happened
(e.g., what data has been damaged) and which principal did it. As mentioned earlier, the
audit trail might also be useful as a proof in court to punish adversaries. These measures
can be viewed as an example of defense in depth—if the first line of defense fails, one
hopes that the next measure will help.

An adversary’s goal may be just to deny service to other users. To achieve this goal an
adversary could flood a communication link with requests that take enough time of the
service that it is unavailable for other users. The challenge in handling a denial-of-service
attack is that the messages sent by the adversary may be legitimate requests and the adver
sary may use many computers to send these legitimate requests (see Suggestions for
Further Reading 11.6.4 for an example). There is no single technique that can address

Saltzer & Kaashoek Ch. 11, p. 25 June 24, 2009 12:29 am

11–26 CHAPTER 11 Information Security

denial-of-service attacks. Solutions typically involve several ideas: audit messages to be
able to detect and filter bad traffic before it reaches the service, careful design of services
to control the resources dedicated to a request and to push work back to the clients, and
replicating services (see Section 10.3[on-line]) to keep the service available during an
attack. By replicating the service, an adversary must flood multiple replicas to make the
service unavailable. This attack may require so many messages that with careful analysis
of audit trails it becomes possible to track down the adversary.

11.1.7 Trusted Computing Base

Implementing the security model of Section 11.1.6 is a negative goal, and therefore dif
ficult. There are no methods to verify correctness of an implementation that is claimed
to achieve a negative goal. So, how do we proceed? The basic idea is to minimize the
number of mechanisms that need to be correct in order for the system to be secure—the
economy of mechanism principle, and to follow the safety net approach (be explicit and
design for iteration).

When designing a secure system, we organize the system into two kinds of modules:
untrusted modules and trusted modules. The correctness of the untrusted modules does
not affect the security of the whole system. The trusted modules are the part that must
work correctly to make the system secure. Ideally, we want the trusted modules to be
usable by other untrusted modules, so that the designer of a new module doesn’t have to
worry about getting the trusted modules right. The collection of trusted modules is usu
ally called the trusted computing base (TCB).

Establishing whether or not a module is part of the TCB can be difficult. Looking at
an individual module, there isn't any simple procedure to decide whether or not the sys
tem's security depends on the correct operation of that module. For example, in UNIX if
a module runs on behalf of the superuser principal (see page 11–77), it is likely to be part
of the TCB because if the adversary compromises the module, the adversary has full priv
ileges. If the same module runs on behalf of a regular principal, it is often not part of the
trusted computing base because it cannot perform privileged operations. But even then
the module could be part of the TCB; it may be part of a user-level service (e.g., a Web
service) that makes decisions about which clients have access. An error in the module’s
code may allow an adversary to obtain unauthorized access.

Lacking a systematic decision procedure for deciding if a module is in the TCB, the
decision is difficult to make and easy to get wrong, yet a good division is important. A
bad division between trusted and untrusted modules may result in a large and complex
TCB, making it difficult to reason about the security of the system. If the TCB is large,
it also means that ordinary users can make only few changes because ordinary users
should only change modules outside the TCB that don’t impact security. If ordinary
users can change the system in only limited ways, it may make it difficult for them to get
their job done in an effective way and result in bad user experiences. A large TCB also
means that much of the system can be modified by only trusted principals, limiting the
rate at which the system can evolve. The design principles of Section 11.1.4 can guide

Saltzer & Kaashoek Ch. 11, p. 26 June 24, 2009 12:29 am

11.1 Introduction to Secure Systems 11–27

this part of the design process, but typically the division must be worked out by security
experts.

Once the split has been worked out, the challenge becomes one of designing and
implementing a TCB. To be successful at this challenge, we want to work in a way that
maximizes the chance that the design and implementation of the TCB are correct. To
do so, we want to minimize the chance of errors and maximize the rate of discovery of
errors. To achieve the first goal, we should minimize the size of the TCB. To achieve the
second goal, the design process should include feedback so that we will find errors
quickly.

The following method shows how to build such a TCB:

• 	Specify security requirements for the TCB (e.g., secure communication over
untrusted networks). The main reason for this step is to explicitly specify
assumptions so that we can decide if the assumptions are credible. As part of the
requirements, one also specifies the attacks against which the TCB is protected
so that the security risks are assessable. By specifying what the TCB does and
does not do, we know against which kinds of attacks we are protected and to
which kinds we are vulnerable.

• 	 Design a minimal TCB. Use good tools (such as authentication logic, which we
will discuss in Section 11.5) to express the design.

• 	Implement the TCB. It is again important to use good tools. For example,
buffer-overrun attacks can be avoided by using a language that checks array
bounds.

• 	 Run the TCB and try to break the security.

The hard part in this multistep design method is verifying that the steps are consis
tent: verifying that the design meets the specification, verifying that the design is resistant
to the specified attacks, verifying that the implementation matches the design, and veri
fying that the system running in the computer is the one that was actually implemented.
For example, as Thompson has demonstrated, it is easy for an adversary with compiler
expertise to insert a Trojan Horses into a system that is difficult to detect [Suggestions
for Further Reading 11.3.3 and 11.3.4].

The problem in computer security is typically not one of inventing clever mechanisms
and architectures, but rather one of ensuring that the installed system actually meets the
design and implementation. Performing such an end-to-end check is difficult. For exam
ple, it is common to hire a tiger team whose mission is to find loopholes that could be
exploited to break the security of the system. The tiger team may be able to find some
loopholes, but, unfortunately, cannot provide a guarantee that all loopholes have been
found.

The design method also implies that when a bug is detected and repaired, the designer
must review the assumptions to see which ones were wrong or missing, repair the
assumptions, and repeat this process until sufficient confidence in the security of the sys
tem has been obtained. This approach flushes out any fuzzy thinking, makes the system
more reliable, and slowly builds confidence that the system is correct.

Saltzer & Kaashoek Ch. 11, p. 27	 June 24, 2009 12:29 am

11–28 CHAPTER 11 Information Security

The method also clearly states what risks were considered acceptable when the system
was designed, because the prospective user must be able to look at the specification to
evaluate whether the system meets the requirements. Stating what risks are acceptable is
important because much of the design of secure systems is driven by economic con
straints. Users may consider a security risk acceptable if the cost of a security failure is
small compared to designing a system that negates the risk.

11.1.8 The Road Map for this Chapter

The rest of this chapter follows the security model of Figure 11.2. Section 11.2 presents
techniques for authenticating principals. Section 11.2 explains how to authenticate mes
sages by using a pair of procedures named SIGN and VERIFY. Section 11.4 explains how to
keep messages confidential using a pair of procedures named ENCRYPT and DECRYPT. Section
11.5 explains how to set up, for example, an authenticated and secure communication
link using security protocols. Section 11.6 discusses different designs for an authorization
service. Because authentication is the foundation of security, Section 11.5 discusses how
to reason about authenticating principals systematically. The actual implementation of
SIGN, VERIFY, ENCRYPT, and DECRYPT we outsource to theoreticians specialized in cryptogra
phy, but a brief summary of how to implement SIGN, VERIFY, ENCRYPT, and DECRYPT is
provided in Section 11.8. The case study in Section 11.10 provides a complete example
of the techniques discussed in this chapter by describing how authentication and autho
rization is done in the World-Wide Web. Finally, Section 11.11 concludes the chapter
with war stories of security failures, despite the best intentions of the designers; these sto
ries emphasize how difficult it is to achieve a negative goal.

11.2 Authenticating Principals
Most security policies involve people. For example, a simple policy might say that only
the owner of the file “x” should be able to read it. In this statement the owner corre
sponds to a human. To be able to support such a policy the file service must have a way
of establishing a secure binding between a user of the service and the origin of a request.
Establishing and verifying the binding are topics that fall in the province of
authentication.

Returning to our security model, the setup for authentication can be presented picto
rially as in Figure 11.3. A person (Alice) asks her client computer to send a message “Buy
100 shares of Generic Moneymaking, Inc.” to her favorite electronic trading service. An
adversary may be able to copy the message, delete it, modify it, or replace it. As explained
in Section 11.1, when Alice’s trading service receives this message, the guard must estab
lish two important facts related to authenticity:

1. 	Who is this principal making the request? The guard must establish if the message
indeed came from the principal that represents the real-world person “Alice.” More
generally, the guard must establish the origin of the message.

2. 	Is this request actually the one that Alice made? Or, for example, has an adversary
modified the message? The guard must establish the integrity of the message.

This section provides the techniques to answer these two questions.

Saltzer & Kaashoek Ch. 11, p. 28	 June 24, 2009 12:29 am

11.2 Authenticating Principals 11–29

Request

trading

 Service

Alice

To: service
From: Alice

Alice’s

account

Buy Generic

guard

Principal

Moneymaking, Inc.

client

FIGURE 11.3

Authentication model.

11.2.1 Separating Trust from Authenticating Principals

Authentication consists of reliably identifying the principal associated with a request.
Authentication can be provided by technical means such as passwords and signing mes
sages. The technical means create a chain of evidence that securely connects an incoming
request with a principal, perhaps by establishing that a message came from the same prin
cipal as a previous message. The technical means may even be able to establish the real-
world identity of the principal.

Once the authentication mechanisms have identified the principal, there is a closely
related but distinct problem: can the principal be trusted? The authentication means may
be able to establish that the real-world identity for a principal is the person “Alice,” but
other techniques are required to decide whether and how much to trust Alice. The trad
ing service may decide to consider Alice’s request because the trading service can, by
technical means, establish that Alice’s credit card number is valid. To be more precise,
the trading service trusts the credit card company to come through with the money and
relies on the credit card company to establish the trust that Alice will pay her credit card
bill.

The authenticity and trust problems are connected through the name of the princi
pal. The technical means establish the name of the principal. Names for principals come
in many flavors: for example, the name might be a symbolic one, like “Alice”, a credit
card number, a pseudonym, or a cryptographic key. The psychological techniques estab
lish trust in the principal’s name. For example, a reporter might trust information from
an anonymous informer who has a pseudonym because previous content of the messages
connected with the pseudonym has always been correct.

To make the separation of trust from authentication of principals more clear, con
sider the following example. You hear about an Internet bookstore named
“ShopWithUs.com”. Initially, you may not be sure what to think about this store. You

Saltzer & Kaashoek Ch. 11, p. 29 June 24, 2009 12:29 am

11–30 CHAPTER 11 Information Security

look at their Web site, you talk to friends who have bought books from them, you hear
a respectable person say publicly that this store is where the person buys books, and from
all of this information you develop some trust that perhaps this bookstore is for real and
is safe to order from. You order one book from ShopWithUs.com and the store delivers
it faster than you expected. After a while you are ordering all your books from them
because it saves the drive to the local bookstore and you have found that they take defec
tive books back without a squabble.

Developing trust in ShopWithUs.com is the psychological part. The name Shop-
WithUs.com is the principal identifier that you have learned that you can trust. It is the
name you heard from your friends, it is the name that you tell your Web browser, and it
is the name that appears on your credit card bill. Your trust is based on that name; when
you receive an e-mail offer from “ShopHere.com”, you toss it in the trash because,
although the name is similar, it does not precisely match the name.

When you actually buy a book at ShopWithUs.com, the authentication of principal
comes into play. The mechanical techniques allow you to establish a secure communica
tion link to a Web site that claims to be ShopWithUs.com, and verify that this Web site
indeed has the name ShopWithUs.com. The mechanical techniques do not themselves
tell you who you are dealing with; they just assure you that whoever it is, it is named
ShopWithUs.com. You must decide yourself (the psychological component) who that is
and how much to trust them.

In the reverse direction, ShopWithUs.com would like to assure itself that it will be
paid for the books it sends. It does so by asking you for a principal identifier—your credit
card number—and subcontracting to the credit card company the psychological compo
nent of developing trust that you will pay your credit card bills. The secure
communication link between your browser and the Web site of ShopWithUs.com
assures ShopWithUs.com that the credit card number you supply is securely associated
with the transaction, and a similar secure communication link to the credit card com
pany assures ShopWithUs.com that the credit card number is a valid principal identifier.

11.2.2 Authenticating Principals

When the trading service receives the message, the guard knows that the message claims
to come from the person named “Alice”, but it doesn’t know whether or not the claim
is true. The guard must verify the claim that the identifier Alice corresponds to the prin
cipal who sent the message.

Most authentication systems follow this model: the sender tells the guard its principal
identity, and the guard verifies that claim. This verification protocol has two stages:

1. 	A rendezvous step, in which a real-world person physically visits an authority that
configures the guard. The authority checks the identity of the real-world person,
creates a principal identifier for the person, and agrees on a method by which the
guard can later identify the principal identifier for the person. One must be

Saltzer & Kaashoek Ch. 11, p. 30	 June 24, 2009 12:29 am

http:ShopWithUs.com
http:ShopWithUs.com
http:ShopWithUs.com
http:ShopWithUs.com

11.2 Authenticating Principals 11–31

particularly cautious in checking the real-world identity of a principal because an
adversary may be able to fake it.

2. 	A verification of identity, which occurs at various later times. The sender presents
a claimed principal identifier and the guard uses the agreed-upon method to verify
the claimed principal identifier. If the guard is able to verify the claimed principal
identifier, then the source is authenticated. If not, the guard disallows access and
raises an alert.

The verification method the user and guard agree upon during the rendezvous step
falls in three broad categories:

• 	 The method uses a unique physical property of the user. For example, faces, voices,
fingerprints, etc. are assumed to identify a human uniquely. For some of these
properties it is possible to design a verification interface that is acceptable to users:
for example, a user speaks a sentence into a microphone and the system compares
the voice print with a previous voice print on file. For other properties it is difficult
to design an acceptable user interface; for example, a computer system that asks
“please, give a blood sample” is not likely to sell well. The uniqueness of the
physical property and whether it is easy to reproduce (e.g., replaying a recorded
voice) determine the strength of this identification approach. Physical
identification is sometimes a combination of a number of techniques (e.g., voice
and face or iris recognition) and is combined with other methods of verification.

• 	 The method uses something unique the user has. The user might have an ID card
with an identifier written on a magnetic strip that can be read by a computer. Or,
the card might contain a small computer that stores a secret; such cards are called
smart cards. The security of this method depends on (1) users not giving their card
to someone else or losing it, and (2) an adversary being unable to reproduce a card
that contains the secret (e.g., copying the content of the magnetic strip). These
constraints are difficult to enforce, since an adversary might bribe the user or
physically threaten the user to give the adversary the user’s card. It is also difficult
to make tamper-proof devices that will not reveal their secret.

• 	 The method uses something that only the user knows. The user remembers a secret
string, for example, a password, a personal identification number (PIN) or, as will
be introduced in Section 11.3, a cryptographic key. The strength of this method
depends on (1) the user not giving away (voluntarily or involuntarily) the password
and (2) how difficult it is for an adversary to guess the user’s secret. Your mother’s
maiden name and 4-digit PINs are weak secrets.

For example, when Alice created a trading account, the guard might have asked her
for a principal identifier and a password (a secret character string), which the guard stores.
This step is the rendezvous step. Later when Alice sends a message to trade, she includes
in the message her claimed principal identifier (“Alice”) and her password, which the

Saltzer & Kaashoek Ch. 11, p. 31	 June 24, 2009 12:29 am

11–32 CHAPTER 11 Information Security

guard verifies by comparing it with its stored copy. If the password in the message
matches, the guard knows that this message came from the principal Alice, assuming that
Alice didn’t disclose her password to anyone else voluntarily or involuntarily. This step
is the verification step.

In real-life authentication we typically use a similar process. For example, we first
obtain a passport by presenting ourselves at the passport bureau, where we answer ques
tions, provide evidence of our identity, and a photograph. This step is the rendezvous
step. Later, we present the passport at a border station. The border guard examines the
information in the passport (height, hair color, etc.) and looks carefully at the photo
graph. This step is the verification step.

The security of authenticating principals depends on, among other things, how care
fully the rendezvous step is executed. As we saw above, a common process is that before
a user is allowed to use a computer system, the user must see an administrator in person
and prove to the administrator the user’s identity. The administrator might ask the pro
spective user, for example, for a passport or a driving license. In that case, the
administrator relies on the agency that issued the passport or driving license to do a good
job in establishing the identity of the person.

In other applications the rendezvous step is a lightweight procedure and the guard
cannot place much trust in the claimed identity of the principal. In the example with the
trading service, Alice chooses her principal identifier and password. The service just
stores the principal identifier and password in its table, but it has no direct way of veri
fying Alice’s identity; Alice is unlikely to be able to see the system administrator of the
trading service in person because she might be at a computer on the other side of the
world. Since the trading service cannot verify Alice’s identity, the service puts little trust
in any claimed connection between the principal identifier and a real-world person. The
account exists for the convenience of Alice to review, for example, her trades; when she
actually buys something, the service doesn’t verify Alice’s identity, but instead verifies
something else (e.g., Alice’s credit card number). The service trusts the credit card com
pany to verify the principal associated with the credit card number. Some credit card
companies have weak verification schemes, which can be exploited by adversaries for
identity theft.

11.2.3 	Cryptographic Hash Functions, Computationally Secure, Window of
Validity

The most commonly employed method for verifying identities in computer systems is
based on passwords because it has a convenient user interface; users can just type in their
name and password on a keyboard. However, there are several weaknesses in this
approach. One weakness is that the stored copy of the password becomes an attractive
target for adversaries. One way to remove this weakness is to store a cryptographic hash
of the password in the password file of the system, rather than the password itself.

A cryptographic hash function maps an arbitrary-sized array of bytes M to a fixed-length
value V, and has the following properties:

Saltzer & Kaashoek Ch. 11, p. 32	 June 24, 2009 12:29 am

11.2 Authenticating Principals 11–33

1. 	For a given input M, it is easy to compute V ← H(M), where H is the hash function;

2. 	It is difficult to compute M knowing only V;

3. 	It is difficult to find another input M' such that H(M') = H(M);

4. 	The computed value V is as short as possible, but long enough that H has a low
probability of collision: the probability of two different inputs hashing to the same
value V must be so low that one can neglect it in practice. A typical size for V is 160
to 256 bits.

The challenge in designing a cryptographic hash function is finding a function that
has all these properties. In particular, providing property 3 is challenging. Section 11.8
describes an implementation of the Secure Hash Algorithm (SHA), which is a U.S. gov
ernment and OECD standard family of hash algorithms.

Cryptographic hash functions, like most cryptographic functions, are computationally
secure. They are designed in such a way that it is computationally infeasible to break
them, rather than being impossible to break. The idea is that if it takes an unimaginable
number of years of computation to break a particular function, then we can consider the
function secure.

Computationally security is measured quantified using a work factor. For crypto
graphic hash functions, the work factor is the minimum amount of work required to
compute a message M' such that for a given M, H(M') = H(M). Work is measured in prim
itive operations (e.g., processor cycles). If the work factor is many years, then for all
practical purposes, the function is just as secure as an unbreakable one because in both
cases there is probably an easier attack approach based on exploiting human fallibility.

In practice, computationally security is measured by a historical work factor. The his
torical work factor is the work factor based on the current best-known algorithms and
current state-of-the-art technology to break a cryptographic function. This method of
evaluation runs the risk that an adversary might come up with a better algorithm to break
a cryptographic function than the ones that are currently known, and furthermore tech
nology changes may reduce the work factor. Given the complexities of designing and
analyzing a cryptographic function, it is advisable to use only ones, such as SHA-256,
that have been around long enough that they have been subjected to much careful, public
review.

Theoreticians have developed models under which they can make absolute statements
about the hardness of some cryptographic functions. Coming up with good models that
match practice and the theoretical analysis of security primitives is an active area of
research with a tremendous amount of progress in the last three decades, but also with
many open problems.

Given that d(technology)/dt is so high in computer systems and cryptography is a fast
developing field, it is good practice to consider the window of validity for a specific cryp
tographic function. The window of validity of a cryptographic function is the minimum
of the time-to-compromise of all of its components. The window of validity for crypto
graphic hash functions is the minimum of the time to compromise the hash algorithm

Saltzer & Kaashoek Ch. 11, p. 33	 June 24, 2009 12:29 am

11–34 CHAPTER 11 Information Security

and the time to find a message M' such that for a given M, H(M') = H(M). The window of
validity of a password-based authentication system is the minimum of the window of
validity of the hashing algorithm, the time to try all possible passwords, and the time to
compromise a password.

A challenge in system design is that the window of validity of a cryptographic func
tion may be shorter than the lifetime of the system. For example, SHA, now referrred to
as “SHA-0” and which produces a 160-bit value for V was first published in 1993, and
superseded just two years later by SHA-1 to repair a possible weakness. Indeed, in 2004,
a cryptographic researcher found a way to systematically derive examples of messages M

and M' that SHA-0 hashes to the same value. Research published in 2005 suggest weak
nesses in SHA-1, but as of 2007 no one has yet found a systematic way to compromise
that widely used hash algorithm (i.e., for a given M no one has yet found a M' that hashes
to the same value of H(M)). As a precaution, however, the National Institute for Stan
dards and Technology is recommending that by 2010 users switch to versions of SHA
(for example, SHA-256) that produce longer values for V. A system designer should be
prepared that during the lifetime of a computer system the cryptographic hash function
may have to be replaced, perhaps more than once.

11.2.4 Using Cryptographic Hash Functions to Protect Passwords

There are many usages of cryptographic hash functions, and we will see them show up
in this chapter frequently. One good use is to protect passwords. The advantage of stor
ing the cryptographic hash of the password in the password file instead of the password
itself is that the hash value does not need to be kept secret. For this purpose, the impor
tant property of the hash function is the second property in the list in Section 11.2.3,
that if the adversary has only the output of a hash function (e.g., the adversary was able
to steal the password file), it is difficult to compute a corresponding input. With this
scheme, even the system administrator cannot figure out what the user’s password is.
(Design principle: Minimize secrets.)

The verification of identity happens when a user logs onto the computer. When the
user types a password, the guard computes the cryptographic hash of the typed password
and compares the result with the value stored in the table. If the values match, the veri
fication of identity was successful; if the verification fails, the guard denies access.

The most common attack on this method is a brute-force attack, in which an adver
sary tries all possible passwords. A brute-force attack can take a long time, so adversaries
often use a more sophisticated version of it: a dictionary attack, which works well for pass
words because users prefer to select an easy-to-remember password. In a dictionary
attack, an adversary compiles a list of likely passwords: first names*, last names, street
names, city names, words from a dictionary, and short strings of random characters.
Names of cartoon characters and rock bands have been shown to be effective guesses in
universities.

The adversary either computes the cryptographic hash of these strings and compares
the result to the value stored in the computer system (if the adversary has obtained the

Saltzer & Kaashoek Ch. 11, p. 34 June 24, 2009 12:29 am

11.2 Authenticating Principals 11–35

table), or writes a computer program that repeatedly attempts to log on with each of
these strings. A variant of this attack is an attack on a specific person’s password. Here
the adversary mines all the information one can find (mother’s maiden name, daughter’s
birth date, license plate number, etc.) about that person and tries passwords consisting
of that information forwards and backwards. Another variant is of this attack is to try a
likely password on each user of a popular Internet site; if passwords are 20 bits (e.g., a 6
digit PIN), then trying a given PIN as a password for 10,000,000 accounts is likely to
yield success for 10 accounts (10 × 220 = 10,000,000).

Several studies have shown that brute-force and dictionary attacks are effective in
practice because passwords are often inherently weak. Users prefer easy-to-remember
passwords, which are often short and contain existing words, and thus dictionary attacks
work well. System designers have countered this problem in several ways. Some systems
force the user to chose a strong password, and require the user to change it frequently.
Some systems disable an account after 3 failed login attempts. Some systems require users
to use both a password and a secret generated by the user’s portable cryptographic device
(e.g., an authentication device with a cryptographic coprocessor). In addition, system
designers often try to make it difficult for adversaries to compile a list of all users on a
service and limit access to the file with cryptographic hashes of passwords.

Since the verification of identity depends solely on the password, it is prudent to
make sure that the password is never disclosed in insecure areas. For example, when a
user logs on to a remote computer, the system should avoid sending the password unpro
tected over an untrusted network. That is easier said than done. For example, sending
the cryptographic hash of the password is not good enough because if the adversary can
capture the hash by eavesdropping, the adversary might be able to replay the hash in a
later message and impersonate a principal or determine the secret using a dictionary
attack.

In general, it is advisable to minimize repeated use of a secret because each exposure
increases the chance that the adversary may discover the secret. To minimize exposure,
any security scheme based on passwords should use them only once per session with a par
ticular service: to verify the identity of a person at the first access. After the first access,
one should use a newly-generated, strong secret for further accesses. More generally,
what we need is a protocol between the user and the service that has the following
properties:

1. it authenticates the principal to the guard;

2. it authenticates the service to the principal;

* A classic study is by Frederick T. Grampp and Robert H. Morris. UNIX operating system security.
Bell System Technical Journal 63, 8, Part 2 (October, 1984), pages 1649–1672. The authors made a
list of 200 names by selecting 20 common female names and appending to each one a single digit
(the system they tested required users to select a password containing at least 6 characters and one
digit). At least one entry of this list was in use as a password on each of several dozen UNIX machines
they examined.

Saltzer & Kaashoek Ch. 11, p. 35 June 24, 2009 12:29 am

11–36 CHAPTER 11 Information Security

3. 	the password never travels over the network so that adversaries cannot learn the
password by eavesdropping on network traffic;

4. 	the password is used only once per session so that the protocol exposes this secret
as few times as possible. This has the additional advantage that the user must type
the password only once per session.

The challenge in designing such a protocol is that the designer must assume that one
or more of the parties involved in the protocol may be under the control of an adversary.
An adversary should not be able to impersonate a principal, for example, by recording all
network messages between the principal and the service, and replaying it later. To with
stand such attacks we need a security protocol, a protocol designed to achieve some
security objective. Before we can discuss such protocols, however, we need some other
security mechanisms. For example, since any message in a security protocol might be
forged by an adversary, we first need a method to check the authenticity of messages. We
discuss message authentication next, the design of confidential communication links in
Section 11.4, and the design of security protocols in Section 11.5. With these mecha
nisms one can design among many other things a secure password protocol.

11.3 Authenticating Messages
Returning to Figure 11.3, when receiving a message, the guard needs an ensured way of
determining what the sender said in the message and who sent the message. Answering
these two questions is the province of message authentication. Message authentication
techniques prevent an adversary from forging messages that pretend to be from someone
else, and allow the guard to determine if an adversary has modified a legitimate message
while it was en route.

In practice, the ability to establish who sent a message is limited; all that the guard
can establish is that the message came from the same origin as some previous message.
For this reason, what the guard really does is to establish that a message is a member of
a chain of messages identified with some principal. The chain may begin in a message
that was communicated by a physical rendezvous. That physical rendezvous securely
binds the identity of a real-world person with the name of a principal, and both the real-
world person and that principal can now be identified as the origin of the current mes
sage. For some applications it is unimportant to establish the real-world person that is
associated with the origin of the message. It may be sufficient to know that the message
originated from the same source as earlier messages and that the message is unaltered.
Once the guard has identified the principal (and perhaps the real-world identity associ
ated with the principal), then we may be able to use psychological means to establish
trust in the principal, as explained in Section 11.2.

To establish that a message belongs to a chain of messages, a guard must be able to
verify the authenticity of the message. Message authenticity requires both:

• 	 data integrity: the message has not been changed since it was sent;

Saltzer & Kaashoek Ch. 11, p. 36	 June 24, 2009 12:29 am

11.3 Authenticating Messages 11–37

• 	 origin authenticity: the claimed origin of the message, as learned by the receiver
from the message content or from other information, is the actual origin.

The issues of data integrity and origin authenticity are closely related. Messages that
have been altered effectively have a new origin. If an origin cannot be determined, the
very concept of message integrity becomes questionable (the message is unchanged with
respect to what?). Thus, integrity of message data has to include message origin, and vice
versa. The reason for distinguishing them is that designers using different techniques to
tackle the two.

In the context of authentication, we mostly talk about authenticating messages. How
ever, the concept also applies to communication streams, files, and other objects
containing data. A stream is authenticated by authenticating successive segments of the
stream. We can think of each segment as a message from the point of view of
authentication.

11.3.1 Message Authentication is Different from Confidentiality

The goal of message confidentiality (keeping the content of messages private) and the
goal of message authentication are related but different, and separate techniques are usu
ally used for each objective, similar to the physical world. With paper mail, signatures
authenticate the author and sealed envelopes protect the letter from being read by others.

Authentication and confidentiality can be combined in four ways, three of which
have practical value:

• 	Authentication and confidentiality. An application (e.g., electronic banking),
might require both authentication and confidentiality of messages. This case is like
a signed letter in a sealed envelope, which is appropriate if the content of the
message (e.g., it contains personal financial information) must be protected and
the origin of the message must be established (e.g., the user who owns the bank
account).

• 	 Authentication only. An application, like DNS, might require just authentication
for its announcements. This case is like a signed letter in an unsealed envelope. It
is appropriate, for example, for a public announcement from the president of a
company to its employees.

• 	Confidentiality only. Requiring confidentially without authentication is
uncommon. The value of a confidential message with an unverified origin is not
great. This case is like a letter in a sealed envelope, but without a signature. If the
guard has no idea who sent the letter, what level of confidence can the guard have
in the content of the letter? Moreover, if the receiver doesn’t know who the sender
is, the receiver has no basis to trust the sender to keep the content of the message
confidential; for all the receiver knows, the sender may have released the content
of the letter to someone else too. For these reasons confidentiality only is
uncommon in practice.

Saltzer & Kaashoek Ch. 11, p. 37	 June 24, 2009 12:29 am

11–38 CHAPTER 11 Information Security

SIGN

M

VERIFY

ACCEPT or REJECTTag

M

secure areasecure area

Alice Bob

M

FIGURE 11.4

A closed design for authentication relies on the secrecy of an algorithm.

• 	 Neither authentication or confidentiality. This combination is appropriate if there
are no intentionally malicious users or there is a separate code of ethics.

To illustrate the difference between authentication and confidentiality, consider a
user who browses a Web service that publishes data about company stocks (e.g., the com
pany name, the current trading price, recent news announcements about the company,
and background information about the company). This information travels from the
Web service over the Internet, an untrusted network, to the user’s Web browser. We can
think of this action as a message that is being sent from the Web service to the user’s
browser:

From: stock.com

To: John’s browser

Body: At 10 a.m. Generic Moneymaking, Inc. was trading at $1

The user is not interested in confidentiality of the data; the stock data is public any
way. The user, however, is interested in the authenticity of the stock data, since the user
might decide to trade a particular stock based on that data. The user wants to be assured
that the data is coming from “stock.com” (and not from a site that is pretending to be
stock.com) and that the data was not altered when it crossed the Internet. For example,
the user wants to be assured that an adversary hasn’t changed “Generic Moneymaking,
Inc.”, the price, or the time. We need a scheme that allows the user to verify the authen
ticity of the publicly readable content of the message. The next section introduces
cryptography for this purpose. When cryptography is used, content that is publicly read
able is known as plaintext or cleartext.

11.3.2 Closed versus Open Designs and Cryptography

In the authentication model there are two secure areas (a physical space or a virtual
address space in which information can be safely confined) separated by an insecure com
munication path (as shown in Figure 11.4) and two boxes: SIGN and VERIFY. Our goal is

Saltzer & Kaashoek Ch. 11, p. 38	 June 24, 2009 12:29 am

11.3 Authenticating Messages 11–39

to set up a secure channel between the two secure areas that provides authenticity for mes
sages sent between the two secure areas. (Section 11.4 shows how one can implement a
secure channel that also provides confidentiality.)

Before diving in the details of how to implement SIGN and VERIFY, lets consider how
we might use them. In a secure area, the sender Alice creates an authentication tag for a
message by invoking SIGN with the message as an argument. The tag and message are
communicated through the insecure area to the receiver Bob. The insecure communica
tion path might be a physical wire running down the street or a connection across the
Internet. In both cases, we must assume that a wire-tapper can easily and surreptitiously
gain access to the message and authentication tag. Bob verifies the authenticity of the
message by a computation based on the tag and the message. If the received message is
authentic, VERIFY returns ACCEPT; otherwise it returns REJECT.

Cryptographic transformations can be used protect against a wide range of attacks on
messages, including ones on the authenticity of messages. Our interest in cryptographic
transformations is not the underlying mathematics (which is fascinating by itself, as can
been seen in Section 11.8), but that these transformations can be used to implement
security primitives such as SIGN and VERIFY.

One approach to implementing a cryptographic system, called a closed design, is to
keep the construction of cryptographic primitives, such as VERIFY and SIGN, secret with
that idea that if the adversary doesn’t understand how SIGN and VERIFY work, it will be
difficult to break the tag. Auguste Kerchkoffs more than a century ago* observed that this
closed approach is typically bad, since it violates the basic design principles for secure sys
tems in a number of ways. It doesn’t minimize what needs to be secret. If the design is
compromised, the whole system needs to be replaced. A review to certify the design must
be limited, since it requires revealing the secret design to the reviewers. Finally, it is unre
alistic to attempt to maintain secrecy of any system that receives wide distribution.

These problems with closed designs led Kerchkoffs to propose a design rule, now
known as Kerchkoffs’ criterion, which is a particular application of the principles of open
design and least privilege: minimize secrets. For a cryptographic system, open design means
that we concentrate the secret in a corner of a cryptographic transformation, and make
the secret removable and easily changeable. An effective way of doing this is to reduce
the secret to a string of bits; this secret bit string is known as a cryptographic key, or key
for short. By choosing a longer key, one can generally increase the time for the adversary
to compromise the transformation.

Figure 11.5 shows an open design for SIGN and VERIFY. In this design the algorithms
for SIGN and VERIFY are public and the only secrets are two keys, K1 and K2. What distin
guishes this open design from a closed design is (1) that public analysis of SIGN and VERIFY

can provide verification of their strength without compromising their security; and (2)

* “Il faut un systeme remplissant certaines conditions exceptionelles ... il faut qu’il n’exige pas le
secret, et qu’il puisse sans inconvenient tomber entre les mains de l’ennemi.” (Compromise of the
system should not disadvantage the participants.) Auguste Kerchkoffs, La cryptographie Militaire,
Chapter II (1883).

Saltzer & Kaashoek Ch. 11, p. 39 June 24, 2009 12:29 am

11–40 CHAPTER 11 Information Security

SIGN

M

VERIFY

ACCEPT or REJECTTag

M

secure areasecure area

Alice Bob

M

K1 K2

FIGURE 11.5

An open design for authentication relies on the secrecy of keys.

it is easy to change the secret parts (i.e., the two keys) without having to reanalyze the
system’s strength.

Depending on the relation between K1 and K2, there are two basic approaches to key-
based transformations of a message: shared-secret cryptography and public-key cryptography.
In shared-secret cryptography K1 is easily computed from K2 and vice versa. Usually in
shared-secret cryptography K1 = K2, and we make that assumption in the text that
follows.

In public-key cryptography K1 cannot be derived easily from K2 (and vice versa). In
public-key cryptography, only one of the two keys must be kept secret; the other one can
be made public. (A better label for public-key cryptography might be “cryptography
without shared secrets”, or even “non-secret encryption”, which is the label adopted by
the intelligence community. Either of those labels would better contrast it with shared-
secret cryptography, but the label “public-key cryptography” has become too widely used
to try to change it.)

Public-key cryptography allows Alice and Bob to perform cryptographic operations
without having to share a secret. Before public-key systems were invented, cryptogra
phers worked under the assumption that Alice and Bob needed to have a shared secret to
create, for example, SIGN and VERIFY primitives. Because sharing a secret can be awkward
and maintaining its secrecy can be problematic, this assumption made certain applica
tions of cryptography complicated. Because public-key cryptography removes this
assumption, it resulted in a change in the way cryptographers thought, and has led to
interesting applications, as we will see in this chapter.

To distinguish the keys in shared-secret cryptography from the ones in public-key
cryptography, we refer to the key in shared-secret cryptography as the shared-secret key.
We refer to the key that can be made public in public-key cryptography as the public key
and to the key that is kept secret in public-key cryptography as the private key. Since
shared-secret keys must also be kept secret, the unqualified term “secret key,” which is
sometimes used in the literature, can be ambiguous, so we avoid using it.

Saltzer & Kaashoek Ch. 11, p. 40 June 24, 2009 12:29 am

11.3 Authenticating Messages 11–41

We can now see more specifically the two ways in which SIGN and VERIFY can benefit
if they are an open design. First, If K1 or K2 is compromised, we can select a new key for
future communication, without having to replace SIGN and VERIFY. Second, we can now
publish the overall design of the system, and how SIGN and VERIFY work. Anyone can
review the design and offer opinions about its correctness.

Because most cryptographic techniques use open design and reduce any secrets to
keys, a system may have several keys that are used for different purposes. To keep the
keys apart, we refer to the keys for authentication as authentication keys.

11.3.3 Key-Based Authentication Model

Returning to Figure 11.5, to authenticate a message, the sender signs the messages using
a key K1. Signing produces as output an authentication tag: a key-based cryptographic trans
formation (usually shorter than the message). We can write the operation of signing as
follows:

T ← SIGN (M, K1)

where T is the authentication tag.
The tag may be sent to the receiver separately from the message or it may be appended

to the message. The message and tag may be stored in separate files or attachments. The
details don’t matter.

Let’s assume that the sender sends a message {M, T}. The receiver receives a message
{M', T'}, which may be the same as {M, T} or it may not. The purpose of message authen
tication is to decide which. The receiver unmarshals {M', T'} into its components M' and
T', and verifies the authenticity of the received message, by performing the computation:

result ← VERIFY (M', T', K2)

This computation returns ACCEPT if M' and T' match; otherwise, it returns REJECT.
The design of SIGN and VERIFY should be such that if an adversary forges a tag, re-uses

a tag from a previous message on a message fabricated by the adversary, etc. the adversary
won’t succeed. Of course, if the adversary replays a message {M, T} without modifying it,
then VERIFY will again return ACCEPT; we need a more elaborate security protocol, the topic
of Section 11.5, to protect against replayed messages.

If M is a long message, a user might sign and verify the cryptographic hash of M, which
is typically less expensive than signing M because the cryptographic hash is shorter than
M. This approach complicates the protocol between sender and receiver a bit because the
receiver must accurately match up M, its cryptographic hash, and its tag. Some imple
mentations of SIGN and VERIFY implement this performance optimization themselves.

11.3.4 Properties of SIGN and VERIFY

To get a sense of the challenges of implementing SIGN and VERIFY, we outline some of the
basic requirements for SIGN and VERIFY, and some attacks that a designer must consider.

Saltzer & Kaashoek Ch. 11, p. 41 June 24, 2009 12:29 am

11–42 CHAPTER 11 Information Security

The sender sends {M, T} and the receiver receives {M', T'}. The requirements for an
authentication system with shared-secret key K are as follows:

1. 	VERIFY (M', T', K) returns ACCEPT if M' = M, T' = SIGN (M, K)

2. 	Without knowing K, it is difficult for an adversary to compute an M' and T' such
that VERIFY (M', T', K) returns ACCEPT

3. 	Knowing M, T, and the algorithms for SIGN and VERIFY doesn’t allow an adversary to
compute K

In short, T should be dependent on the message content M and the key K. For an
adversary who doesn’t know key K, it should be impossible to construct a message M' and
a T' different from M and T that verifies correctly using key K.

A corresponding set of properties must hold for public-key authentication systems:

1. 	VERIFY (M', T', K2) returns ACCEPT if M' = M, T' = SIGN (M, K1)

2. 	Without knowing K1, it is difficult for an adversary to compute an M' and T' such
that VERIFY (M', T', K2) returns ACCEPT

3. 	Knowing M, T, K2, and the algorithms for verify and sign doesn’t allow an adversary
to compute K1

The requirements for SIGN and VERIFY are formulated in absolute terms. Many good
implementations of VERIFY and SIGN, however, don’t meet these requirements perfectly.
Instead, they might guarantee property 2 with very high probability. If the probability is
high enough, then as a practical matter we can treat such an implementation as being
acceptable.What we require is that the probability of not meeting property 2 be much
lower than the likelihood of a human error that leads to a security breach.

The work factor involved in compromising SIGN and VERIFY is dependent on the key
length; a common way to increase the work factor for the adversary is use a longer key.
A typical key length used in the field for the popular RSA public-key cipher (see Section
11.8) is 1,024 or 2,048 bits. SIGN and VERIFY implemented with shared-secret ciphers
often use shorter keys (in the range of 128 to 256 bits) because existing shared-secret
ciphers have higher work factors than existing public-key ciphers. It is also advisable to
change keys periodically to limit the damage in case a key is compromised and crypto
graphic protocols often do so (see Section 11.5).

Broadly speaking, the attacks on authentication systems fall in five categories:

1. 	Modifications to M and T. An adversary may attempt to change M and the
corresponding T. The VERIFY function should return REJECT even if the adversary
deletes or flips only a single bit in M and tries to make corresponding change to T.
Returning to our trading example, VERIFY should return REJECT if the adversary
changes M from “At 10 a.m. Generic Moneymaking, Inc. was trading at $1” to “At
10 a.m. Generic Moneymaking, Inc. was trading at $200” and tries to make the
corresponding changes to T.

Saltzer & Kaashoek Ch. 11, p. 42	 June 24, 2009 12:29 am

11.3 Authenticating Messages 11–43

2. 	Reordering M. An adversary may not change any bits, but just reorder the existing
content of M. For example, VERIFY should return REJECT if the adversary changes M

to “At 1 a.m. Generic Moneymaking, Inc. was trading at $10” (The adversary has
moved “0” from “10 a.m.” to “$10”).

3. 	Extending M by prepending or appending information to M. An adversary may not
change the content of M, but just prepend or append some information to the
existing content of M. For example, an adversary may change M to “At 10 a.m.
Generic Moneymaking, Inc. was trading at $10”. (The adversary has appended
“0” to the end of the message.)

4. 	Splicing several messages and tags. An adversary may have recorded two messages
and their tags, and tried to combine them into a new message and tag. For
example, an adversary might take “At 10 a.m. Generic Moneymaking, Inc.” from
one transmitted message and combine it with “was trading at $9” from another
transmitted message, and splice the two tags that go along with those messages by
taking the first several bytes from the first tag and the remainder from the second
tag.

5. 	Since SIGN and VERIFY are based on cryptographic transformations, it may also be
possible to directly attack those transformations. Some mathematicians, known as
cryptanalysts, are specialists in devising such attacks.

These requirements and the possible attacks make clear that the construction of SIGN

and VERIFY primitives is a difficult task. To protect messages against the attacks listed
above requires a cryptographer who can design the appropriate cryptographic transfor
mations on the messages. These transformations are based on sophisticated mathematics.
Thus, we have the worst of two possible worlds: we must achieve a negative goal using
complex tools. As a result, even experts have come up with transformations that failed
spectacularly. Thus, a non-expert certainly should not attempt to implement SIGN and
VERIFY, and their implementation falls outside the scope of this book. (The interested
reader can consult Section 11.8 to get a flavor of the complexities.)

The window of validity for SIGN and VERIFY is the minimum of the time to compromise
the signing algorithm, the time to compromise the hash algorithm used in the signature
(if one is used), the time to try out all keys, and the time to compromise the signing key.

As an example of the importance of keeping track of the window of validity, a team
of researchers in 2008 was able to create forged signatures that many Web browsers
accepted as valid.* The team used a large array of processors found in game consoles to
perform a collision attack on a hash function designed in 1994 called MD5. MD5 had
been identified as potentially weak as early as 1996 and a collision attack was demon
strated in 2004. Continued research revealed ways of rapidly creating collisions, thus
allowing a search for helpful collisions. The 2008 team was able to find a helpful collision

* A. Sotirov et al. MD5 considered harmful: creating a rogue CA certificate. 25th Annual Chaos
Communication Congress, Berlin, December 2008.

Saltzer & Kaashoek Ch. 11, p. 43	 June 24, 2009 12:29 am

11–44 CHAPTER 11 Information Security

with which they could forge a trusted signature on an authentication message. Because
some authentication systems that Web browsers trust had not yet abandoned their use
of MD5, many browsers accepted the signature as valid and the team was able to trick
these browsers into making what appeared to be authenticated connections to well-
known Web sites. The connections actually led to impersonation Web sites that were
under the control of the research team. (The forged signatures were on certificates for the
transport layer security (TLS) protocol. Certificates are discussed in Sections 11.5.1 and
11.7.4, and Section 11.10 is a case study of TLS.)

11.3.5 Public-key versus Shared-Secret Authentication

If Alice signs the message using a shared-secret key, then Bob verifies the tag using the
same shared-secret key. That is, VERIFY checks the received authentication tag from the
message and the shared-secret key. An authentication tag computed with a shared-secret
key is called a message authentication code (MAC). (The verb “to MAC” is the common
jargon for “to compute an authentication tag using shared-secret cryptography”.)

In the literature, the word “sign” is usually reserved for generating authentication tags
with public-key cryptography. If Alice signs the message using public-key cryptography,
then Bob verifies the message using a different key from the one that Alice used to com
pute the tag. Alice uses her private key to compute the authentication tag. Bob uses
Alice’s corresponding public key to verify the authentication tag. An authentication tag
computed with a public-key system is called a digital signature. The digital signature is
analogous to a conventional signature because only one person, the holder of the private
key, could have applied it.

Alice’s digital signatures can be checked by anyone who knows Alice’s public key,
while checking her MACs requires knowledge of the shared-secret key that she used to
create the MAC. Thus, Alice might be able to successfully repudiate (disown) a message
authenticated with a MAC by arguing that Bob (who also knows the shared-secret key)
forged the message and the corresponding MAC.

In contrast, the only way to repudiate a digital signature is for Alice to claim that
someone else has discovered her private key. Digital signatures are thus more appropriate
for electronic checks and contracts. Bob can verify Alice’s signature on an electronic
check she gives him, and later when Bob deposits the check at the bank, the bank can
also verify her signature. When Alice uses digital signatures, neither Bob nor the bank
can forge a message purporting to be from Alice, in contrast to the situation in which
Alice uses only MACs.

Of course, non-repudiation depends on not losing one’s private key. If one loses one’s
private key, a reliable mechanism is needed for broadcasting the fact that the private key
is no longer secret so that one can repudiate later forged signatures with the lost private
key. Methods for revoking compromised private keys are the subject of considerable
debate.

SIGN and VERIFY are two powerful primitives, but they must be used with care. Con
sider the following attack. Alice and Bob want to sign a contract saying that Alice will

Saltzer & Kaashoek Ch. 11, p. 44 June 24, 2009 12:29 am

11.3 Authenticating Messages 11–45

pay Bob $100. Alice types it up as a document using a word-processing application and
both digitally sign it. In a few days Bob comes to Alice to collect his money. To his sur
prise, Alice presents him with a Word document that states he owes her $100. Alice also
has a valid signature from Bob for the new document. In fact, it is the exact same signa
ture as for the contract Bob remembers signing and, to Bob's great amazement, the two
documents are actually bit-for-bit identical. What Alice did was create a document that
included an if statement that changed the displayed content of the document by referring
to an external input such as the current date or filename. Thus, even though the signed
contents remained the same, the displayed contents changed because they were partially
dependent on unsigned inputs. The problem here is that Bob’s mental model doesn’t
correspond to what he has signed. As always with security, all aspects must be thought
through! Bob is much better off signing only documents that he himself created.

11.3.6 Key Distribution

We assumed that if Bob successfully verified the authentication tag of a message, that
Alice is the message’s originator. This assumption, in fact, has a serious flaw. What Bob
really knows is that the message originated from a principal that knows key K1. The
assumption that the key K1belongs to Alice may not be true. An adversary may have sto
len Alice’s key or may have tricked Bob into believing that K1 is Alice’s key. Thus, the
way in which keys are bound to principals is an important problem to address.

The problem of securely distributing keys is also sometimes called the name-to-key
binding problem; in the real world, principals are named by descriptive names rather
than keys. So, when we know the name of a principal, we need a method for securely
finding the key that goes along with the named principal. The trust that we put in a key
is directly related to how secure the key distribution system is.

Secure key distribution is based on a name discovery protocol, which starts, perhaps
unsurprisingly, with trusted physical delivery. When Alice and Bob meet, Alice can give
Bob a cryptographic key. This key is authenticated because Bob knows he received it
exactly as Alice gave it to him. If necessary, Alice can give Bob this key secretly (in an
envelope or on a portable storage card), so others don’t see or overhear it. Alice could also
use a mutually trusted courier to deliver a key to Bob in a secret and authenticated
manner.

Cryptographic keys can also be delivered over a network. However, an adversary
might add, delete, or modify messages on the network. A good cryptographic system is
needed to ensure that the network communication is authenticated (and confidential, if
necessary). In fact, in the early days of cryptography, the doctrine was never to send keys
over a network; a compromised key will result in more damage than one compromised
message. However, nowadays cryptographic systems are believed to be strong enough to
take that risk. Furthermore, with a key-distribution protocol in place it is possible to
periodically generate new keys, which is important to limit the damage in case a key is
compromised.

Saltzer & Kaashoek Ch. 11, p. 45 June 24, 2009 12:29 am

11–46 CHAPTER 11 Information Security

The catch is that one needs cryptographic keys already in place in order to distribute
new cryptographic keys over the network! This approach works if the recursion ‘‘bottoms
out’’ with physical key delivery. Suppose two principals Alice and Bob wish to commu
nicate, but they have no shared (shared-secret or public) key. How can they establish keys
to use?

One common approach is to use a mutually-trusted third party (Charles) with whom
Alice and Bob already each share key information. For example, Charles might be a
mutual friend of Alice and Bob. Charles and Alice might have met physically at some
point in time and exchanged keys and similarly Charles and Bob might have met and
also exchanged keys. If Alice and Bob both trust Charles, then Alice and Bob can
exchange keys through Charles.

How Charles can assist Alice and Bob depends on whether they are using shared-
secret or public-key cryptography. Shared-secret keys need to be distributed in a way that
is both confidential and authenticated. Public keys do not need to be kept secret, but
need to be distributed in an authenticated manner. What we see developing here is a
need for another security protocol, which we will study in Section 11.5.

In some applications it is difficult to arrange for a common third party. Consider a
person who buys a personal electronic device that communicates over a wireless network.
The owner installs the new gadget (e.g., digital surveillance camera) in the owner’s house
and would like to make sure that burglars cannot control the device over the wireless net
work. But, how does the device authenticate the owner, so that it can distinguish the
owner from other principals (e.g., burglars)? One option is that the manufacturer or dis
tributor of the device plays the role of Charles. When purchasing a device, the
manufacturer records the buyer’s public key. The device has burned into it the public
key of the manufacturer; when the buyer turns on the device, the device establishes a
secure communication link using the manufacturer’s public key and asks the manufac
turer for the public key of its owner. This solution is impractical, unfortunately: what if
the device is not connected to a global network and thus cannot reach the manufacturer?
This solution might also have privacy objections: should manufacturers be able to track
when consumers use devices? Sidebar 11.5, about the resurrecting duckling provides a
solution that allows key distribution to be performed locally, without a central principal
involved.

Not all applications deploy a sophisticated key-distribution protocol. For example,
the secure shell (SSH), a popular Internet protocol used to log onto a remote computer
has a simple key distribution protocol. The first time that a user logs onto a server named
“athena.Scholarly.edu”, SSH sends a message in the clear to the machine with DNS
name athena.Scholarly.edu asking it for its public key. SSH uses that public key to set up
an authenticated and confidential communication link with the remote computer. SSH
also caches this key and remembers that the key is associated with the DNS name “ath
ena.Scholarly.edu”. The next time the user logs onto athena.Scholarly.edu, SSH uses the
cached key to set up the communication link.

Because the DNS protocol does not include message authentication, the security risk
in SSH’s approach is a masquerading attack: an adversary might be able to intercept the

Saltzer & Kaashoek Ch. 11, p. 46 June 24, 2009 12:29 am

http:athena.Scholarly.edu

11.3 Authenticating Messages 11–47

Sidebar 11.5: Authenticating personal devices: the resurrecting duckling policy
Inexpensive consumer devices have (or will soon have) embedded microprocessors in them that
are able to communicate with other devices over inexpensive wireless networks. If household
devices such as the home theatre, the heating system, the lights, and the surveillance cameras
are controlled by, say, a universal remote control, an owner must ensure that these devices (and
new ones) obey the owner’s commands and not the neighbor’s or, worse, a burglar’s.This
situation requires that a device and the remote control be able to establish a secure relationship.
The relationship may be transient, however; the owner may want to resell one of the devices,
or replace the remote control.

In The resurrecting duckling: security issues for ad-hoc wireless networks [Suggestions for Further
Reading 11.4.2], Stajano and Anderson provide a solution based on the vivid analogy of how
ducklings authenticate their mother. When a duckling emerges from its egg, it will recognize
as its mother the first moving object that makes a sound. In the Stajano and Anderson proposal,
a device will recognize as its owner the first principal that sends it an authentication key. As
soon as the device receives a key, its status changes from newborn to imprinted, and it stays
faithful to that key until its death. Only an owner can force a device to die and thereby reverse
its status to newborn. In this way, an owner can transfer ownership.

A widely used example of the resurrecting duckling is purchasing wireless routers. These routers
often come with the default user name “Admin” and password “password”. When the buyer
plugs the router in for the first time, it is waiting to be imprinted with a better password; the
first principal to change the password gets control of the router. The router has a resurrection
button that restores the defaults, thus again making it imprintable (and allowing the buyer to
recover if an adversary did grab control).

DNS lookup for “athena.Scholarly.edu” and return an IP address for a computer con
trolled by the adversary. When the user connects to that IP address, the adversary replies
with a key that the adversary has generated. When the user makes an SSH connection
using that public key, the adversary’s computer masquerades as athena.Scholarly.edu. To
counter this attack, the SSH client asks a question to the user on the first connection to
a remote computer: “I don’t recognize the key of this remote computer, should I trust
it?” and a wary user should compare the displayed key with one that it received from the
remote computer’s system administrator over an out-of-band secure communication
link (e.g., a piece of paper). Many users aren’t wary and just answer “yes” to the question.

The advantage of the SSH approach is that no key distribution protocol is necessary
(beyond obtaining the fingerprint). This has simplified the deployment of SSH and has
made it a success. As we will see in Section 11.5, securely distributing keys such that a
masquerading attack is impossible is a challenging problem.

Saltzer & Kaashoek Ch. 11, p. 47 June 24, 2009 12:29 am

http:athena.Scholarly.edu

11–48 CHAPTER 11 Information Security

11.3.7 Long-Term Data Integrity with Witnesses

Careful use of SIGN and VERIFY can provide both data integrity and authenticity guaran
tees. Some applications have requirements for which it is better to use different
techniques for integrity and authenticity. Sidebar 7.1[on-line] mentions a digital archive,
which requires protection against an adversary who tries to change the content of a file
stored in the archive. To protect a file, a designer wants to make many separate replicas
of the file, following the durability mantra, preferably in independently administered
and thus separately protected domains. If the replicas are separately protected, it is more
difficult for an adversary to change all of them.

Since maintaining widely-separated copies of large files consumes time, space, and
communication bandwidth, one can reduce the resource expenditure by replacing some
(but not all) copies of the file with a smaller witness, with which users can periodically
check the validity of replicas (as explained in Section 10.3.4[on-line]). If the replica dis
agrees with the witness, then one repairs the replica by finding a replica that matches the
witness. Because the witness is small, it is easy to protect it against tampering. For exam
ple, one can publish the witness in a widely-read newspaper, which is likely to be
preserved either on microfilm or digitally in many public libraries.

This scheme requires that a witness be cryptographically secure. One way of con
structing a secure witness is using SIGN and VERIFY. The digital archiver uses a
cryptographic hash function to create a secure fingerprint of the file, signs the fingerprint
with its private key, and then distributes copies of the file widely. Anyone can verify the
integrity of a replica by computing the finger print of the replica, verifying the witness
using the public key of the archiver, and then comparing the finger print of the witness
against the finger print of the replica.

This scheme works well in general, but is less suitable for long-term data integrity.
The window of validity of this scheme is determined by the minimum time to compro
mise the private key used for signing, the signing algorithm, the hashing algorithm, and
the validity of the name-to-public key binding. If the goal of the archiver is to protect
the data for many decades (or forever), it is likely that the digital signature will be invalid
before the data.

In such cases, it is better to protect the witness by widely publishing just the crypto
graphic hash instead of using SIGN and VERIFY. In this approach, the validity of the witness
is the time to compromise the cryptographic hash. This window can be made large. One
can protect against a compromised cryptographic hash algorithm by occasionally com
puting and publishing a new witness with the latest, best hash algorithm. The new
witness is a hash of the original data, the original witness, and a timestamp, thereby dem
onstrating the integrity of the original data at the time of the new witness calculation.

The confidence a user has in the authenticity of a witness is determined by how easily
the user can verify that the witness was indeed produced by the archiver. If the newspaper
or the library physically received the witnesses directly from the archiver, then this con
fidence may be high.

Saltzer & Kaashoek Ch. 11, p. 48 June 24, 2009 12:29 am

11.4 Message Confidentiality 11–49

11.4 Message Confidentiality
Some applications may require message confidentiality in addition to message authenti
cation. Two principals may want to communicate privately without adversaries having
access to the communicated information. If the principals are running on a shared phys
ical computer, this goal is easily accomplished using the kernel. For example, when
sending a message to a port (see Section 5.3.5), it is safe to ask the kernel to copy the
message to the recipient’s address space, since the kernel is already trusted; the kernel can
read the sender’s and receiver’s address space anyway.

If the principals are on different physical processors, and can communicate with each
other only over an untrusted network, ensuring confidentiality of messages is more chal
lenging. By definition, we cannot trust the untrusted network to not disclose the bits that
are being communicated. The solution to this problem is to introduce encryption and
decryption to allow two parties to communicate without anyone else being able to tell
what is being communicated.

11.4.1 Message Confidentiality Using Encryption

The setup for providing confidentiality over untrusted networks is shown in Figure 11.6.
Two secure areas are separated by an insecure communication path. Our goal is to pro
vide a secure channel between the two secure areas that provides confidentiality.

Encryption transforms a plaintext message into ciphertext in such a way that an
observer cannot construct the original message from the ciphertext version, yet the
intended receiver can. Decryption transforms the received ciphertext into plaintext. Thus,
one challenge in the implementation of channels that provide confidentiality is to use an
encrypting scheme that is difficult to reverse for an adversary. That is, even if an observer
could copy a message that is in transit and has an enormous amount of time and com
puting power available, the observer should not be able to transform the encrypted
message into the plaintext message. (As with signing, we use the term messages concep
tually; one can also encrypt and decrypt files, e-mail attachments, streams, or other data
objects.)

The ENCRYPT and DECRYPT primitives can be implemented using cryptographic transfor
mations. ENCRYPT and DECRYPT can use either shared-secret cryptography or public-key
cryptography. We refer to the keys used for encryption as encryption keys.

With shared-secret cryptography, Alice and Bob share a key K that only they know.
To keep a message M confidential, Alice computes ENCRYPT (M, K) and sends the resulting
ciphertext C to Bob. If the encrypting box is good, an adversary will not to be able to get
any use out of the ciphertext. Bob computes DECRYPT (C, K), which will recover the plain
text form of M. Bob can send a reply to Alice using exactly the same system with the same
key. (Of course, Bob could also send the reply with a different key, as long as that differ
ent key is also shared with Alice.)

Saltzer & Kaashoek Ch. 11, p. 49 June 24, 2009 12:29 am

11–50 CHAPTER 11 Information Security

ENCRYPT

K1

M

secure area

ENCRYPT (M, K1)

insecure area

DECRYPT

K2

DECRYPT (ENCRYPT (M, K1),K2)

secure area

FIGURE 11.6

Providing confidentiality using ENCRYPT and DECRYPT over untrusted networks.

With public-key cryptography, Alice and Bob do not have to share a secret to achieve
confidentiality for communication. Suppose Bob has a private and public key pair
(KBpriv, KBpub), where KBpriv is Bob’s private key and KBpub is Bob’s public key. Bob gives
his public key to Alice through an existing channel; this channel does not have to be
secure, but it does have to provide authentication: Alice needs to know for sure that this
key is really Bob’s key.

Given Bob’s public key (KBpub), Alice can compute ENCRYPT (M, KBpub) and send the
encrypted message over an insecure network. Only Bob can read this message, since he
is the only person who has the secret key that can decrypt her ciphertext message. Thus,
using encryption, Alice can ensure that her communication with Bob stays confidential.

To achieve confidential communication in the opposite direction (from Bob to
Alice), we need an additional set of keys, a KApub and KApriv for Alice, and Bob needs to
learn Alice’s public key.

11.4.2 Properties of ENCRYPT and DECRYPT

For both the shared-key and public-key encryption systems, the procedures ENCRYPT and
DECRYPT should have the following properties. It should be easy to compute:

• C ← ENCRYPT (M, K1)
• M' ← DECRYPT (C, K2)

and the result should be that M = M'.
The implementation of ENCRYPT and DECRYPT should withstand the following attacks:

1. 	Ciphertext-only attack. In this attack, the primary information available to the
adversary is examples of ciphertext and the algorithms for ENCRYPT and DECRYPT.
Redundancy or repeated patterns in the original message may show through even
in the ciphertext, allowing an adversary to reconstruct the plaintext. In an open

Saltzer & Kaashoek Ch. 11, p. 50	 June 24, 2009 12:29 am

11.4 Message Confidentiality 11–51

design the adversary knows the algorithms for ENCRYPT and DECRYPT, and thus the
adversary may also be able to mount a brute-force attack by trying all possible keys.

More precisely, when using shared-secret cryptography, the following property
must hold:

• 	 Given ENCRYPT and DECRYPT, and some examples of C, it should be difficult for
an adversary to reconstruct K or compute M.

When using public-key cryptography, the corresponding property holds:

• 	 Given ENCRYPT and DECRYPT, some examples of C, and assuming an adversary
knows K1 (which is public), it should be difficult for the adversary to compute
either the secret key K2 or M.

2. 	Known-plaintext attack. The adversary has access to the ciphertext C and also to
the plaintext M corresponding to at least some of the ciphertext C. For instance, a
message may contain standard headers or a piece of predictable plaintext, which
may help an adversary figure out the key and then recover the rest of the plaintext.

3. 	Chosen-plaintext attack. The adversary has access to ciphertext C that corresponds
to plaintext M that the adversary has chosen. For instance, the adversary may
convince you to send an encrypted message containing some data chosen by the
adversary, with the goal of learning information about your transforming system,
which may allow the adversary to more easily discover the key. As a special case, the
adversary may be able in real time to choose the plaintext M based on ciphertext C

just transmitted. This variant is known as an adaptive attack.

A common design mistake is to unintentionally admit an adaptive attack by pro
viding a service that happily encrypts any input it receives. This service is known
as an oracle and it may greatly simplify the effort required by an adversary to crack
the cryptographic transformation. For example, consider the following adaptive
chosen-plaintext attack on the encryption of packets in WiFi wireless networks.
The adversary sends a carefully-crafted packet from the Internet addressed to some
node on the WiFi network. The network will encrypt and broadcast that packet
over the air, where the adversary can intercept the ciphertext, study it, and imme
diately choose more plaintext to send in another packet. Researchers used this
attack as one way of breaking the design of the security of WiFi Wired Equivalent
Privacy (WEP)*.

4. 	Chosen-ciphertext attack. The adversary might be able to select a ciphertext C and
then observe the M' that results when the recipient decrypts C. Again, an adversary
may be able to mount an adaptive chosen-ciphertext attack.

* N. Borisov, I. Goldberg, and D. Wagner, Intercepting mobile communications: the insecurity of
802.11, MOBICOM ‘01, Rome, Italy, July 2001.

Saltzer & Kaashoek Ch. 11, p. 51	 June 24, 2009 12:29 am

11–52 CHAPTER 11 Information Security

Section 11.8 describes cryptographic implementations of ENCRYPT and DECRYPT that
provide protection against these attacks. A designer can increase the work factor for an
adversary by increasing the key length. A typical key length used in the field is 1,024 bits.

The window of validity of ENCRYPT and DECRYPT is the minimum of the time to com
promise of the underlying cryptographic transformation, the time to try all keys, and the
time to compromise the key itself. When considering what implementation of ENCRYPT

and DECRYPT to use, it is important to understand the required window of validity. It is
likely that the window of validity required for encrypting protocol messages between a
client and a server is smaller than the window of validity required for encrypting long-
term file storage. A protocol message that must be private just for the duration of a con
versation might be adequately protected by an cryptographic transformation that can be
compromised with, say, one year of effort. On the other hand, if the period of time for
which a file must be protected is greater than the window of validity of a particular cryp
tographic system, the designer may have to consider additional mechanisms, such as
multiple encryptions with different keys.

11.4.3 Achieving both Confidentiality and Authentication

Confidentiality and message authentication can be combined in several ways:

• 	 For confidentiality only, Alice just encrypts the message.
• 	 For authentication only, Alice just signs the message.
• 	 For both confidentiality and authentication, Alice first encrypts and then signs

the encrypted message (i.e., SIGN (ENCRYPT (M, Kencrypt), Ksign)), or, the other way
around. (If good implementations of SIGN and VERIFY are used, it doesn’t matter
for correctness in which order the operations are applied.)

The first option, confidentiality without authentication, is unusual. After all, what is
the purpose of keeping information confidential if the receiver cannot tell if the message
has been changed? Therefore, if confidentiality is required, one also provides
authentication.

The second option is common. Much data is public (e.g., routing updates, stock
updates, etc.), but it is important to know its origin and integrity. In fact, it is easy to
argue the default should be that all messages are at least authenticated.

For the third option, the keys used for authentication and confidentiality are typically
different. The sender authenticates with an authentication key, and encrypts with a
encryption key. The receiver would use the appropriate corresponding keys to decrypt
and to verify the received message. The reason to use different keys is that the key is a bit
pattern, and using the same bit pattern as input to two cryptographic operations on the
same message is risky because a clever cryptanalyst may be able to discover a way of
exploiting the repetition. Section 11.8 gives an example of exploitation of repetition in
an otherwise unbreakable encryption system known as the one-time pad. Problem set 44
and 46 also explores one-time pads to setup a secure communicaiton channel.

Saltzer & Kaashoek Ch. 11, p. 52	 June 24, 2009 12:29 am

11.4 Message Confidentiality 11–53

In addition to using the appropriate keys, there are other security hazards. For exam
ple, M should have identified explicitly the communicating parties. When Alice sends a
message to Bob, she should include in the message the names of Alice and Bob to avoid
impersonation attacks. Failure to follow this explicitness principle can create security
problems, as we will see in Section 11.5.

11.4.4 Can Encryption be Used for Authentication?

As specified, ENCRYPT and DECRYPT don’t protect against an adversary modifying M and one
must SIGN and VERIFY for integrity. With some implementations, however, a recipient of
an encrypted message can be confident not only of its confidentiality, but also of its
authenticity. From this observation arose the misleading intuition that decrypting a mes
sage and finding something recognizable inside is an effective way of establishing the
authenticity of that message. The intuition is based on the claim that if only the sender
is able to encrypt the message, and the message contains at least one component that the
recipient expected the sender to include, then the sender must have been the source of
the message.

The problem with this intuition is that as a general rule, the claim is wrong. It
depends on using a cryptographic system that links all of the ciphertext of the message
in such a way that it cannot be sliced apart and respliced, perhaps with components from
other messages between the same two parties and using the same cryptographic key. As
a result, it is non-trivial to establish that a system based on the claim is secure even in the
cases in which it is. Many protocols that have been published and later found to be defec
tive were designed using that incorrect intuition. Those protocols using this approach
that are secure require much effort to establish the necessary conditions, and it is remark
ably hard to make a compelling argument that they are secure; the argument typically
depends on the exact order of fields in messages, combined with some particular proper
ties of the underlying cryptographic operations.

Therefore, in this book we treat message confidentiality and authenticity as two sep
arate goals that are implemented independently of each other. Although both
confidentiality and authenticity rely in their implementation on cryptography, they use
the cryptographic operations in different ways. As explained in Section 11.8, the shared-
secret AES cryptographic transformation, for example, isn’t by itself suitable for either
signing or encrypting; it needs to be surrounded by various cipher-feedback mechanisms,
and the mechanisms that are good for encrypting are generally somewhat different from
those that are good for signing. Similarly, when RSA, a public-key cryptographic trans
formation, is used for signing, it is usually preceded by hashing the message to be signed,
rather than applying RSA directly to the message; a failure to hash can lead to a security
blunder.

Saltzer & Kaashoek Ch. 11, p. 53 June 24, 2009 12:29 am

11–54 CHAPTER 11 Information Security

A recent paper* on the topic on the order of authentication and encrypting suggests
that first encrypting and then computing an authentication tag may cover up certain
weaknesses in some implementations of the encrypting primitives. Also, cryptographic
transformations have been proposed that perform the transformation for encrypting and
computing an authentication tag in a single pass over the message, saving time compared
to first encrypting and then computing an authentication tag. Cryptography is a devel
oping area, and the last word on this topic has not been said; interested readers should
check out the proceedings of the conferences on cryptography. For the rest of the book,
however, the reader can think of message authentication and confidentiality as two sep
arate, orthogonal concepts.

11.5 Security Protocols
In the previous sections we discovered a need for protecting a principal’s password when
authenticating to a remote service, a need for distributing keys securely, etc. Security pro
tocols can achieve those objectives. A security protocol is an exchange of messages designed
to allow mutually-distrustful parties to achieve an objective. Security protocols often use
cryptographic techniques to achieve the objective. Other example objectives include:
electronic voting, postage stamps for e-mail, anonymous e-mail, and electronic cash for
micropayments.

In a security protocol with two parties, the pattern is generally a back-and-forth pat
tern. Some security protocols involve more than two parties in which case the pattern
may be more complicated. For example, key distribution usually involves at least three
parties (two principals and a trusted third party). A credit-purchase on the Internet is
likely to involve many more principals than three (a client, an Internet shop, a credit card
company, and one or more trusted third parties) and thus require four or more messages.

The difference between the network protocols discussed in Chapter 7[on-line] and
the security ones is that standard networking protocols assume that the communicating
parties cooperate and trust each other. In designing security protocols we instead assume
that some parties in the protocol may be adversaries and also that there may be an outside
party attacking the protocol.

11.5.1 Example: Key Distribution

To illustrate the need for security protocols, let’s study two protocols for key distribu
tion. In Section 11.3.6, we have already seen that distributing keys is based on a name
discovery protocol, which starts with trusted physical delivery. So, let’s assume that Alice
has met Charles in person, and Charles has met Bob in person. The question then is: is
there a protocol such that Alice and Bob, who have never met, can exchange keys securely

* Hugo Krawczyk, The Order of Encryption and Authentication for Protecting Communications (or:
How Secure is SSL?), Advances in Cryptology (Springer LNCS 2139), 2001, pages 310–331.

Saltzer & Kaashoek Ch. 11, p. 54 June 24, 2009 12:29 am

11.5 Security Protocols 11–55

over an untrusted network? This section introduces the basic approach and subsequent
sections work out the approach in detail.

The public-key case is simpler, so we treat it first. Alice and Bob already know
Charles’s public key (since they have met in person), and Charles knows each of Alice
and Bob’s public keys. If Alice and Bob both trust Charles, then Alice and Bob can
exchange keys through Charles.

Alice sends a message to Charles (it does not need to be either encrypted or signed),
asking:

1. Alice ⇒ Charles: {‘‘Please give me keys for Bob’’}

The message content is the string “Please, give me keys for Bob”. The source address is
“Alice” and the destination address is “Charles.” When Charles receives this message
from Alice, he cannot be certain that if the message came from Alice, since the source
and destination fields of Chapter 7[on-line] are not authenticated.
For this message, Charles doesn’t really care who sent it, so he replies:

1. Charles ⇒ Alice: {‘‘To communicate with Bob, use public key KBpub.”}Cpriv

The notation {M}k denotes signing a message M with key k. In this example, the mes
sage is signed with Charles’s private authentication key. This signed message to Alice
includes the content of the message as well as the authentication tag. When Alice receives
this message, she can tell from the fact that this message verifies with Charles’s public key
that the message actually came from Charles.

Of course, these messages would normally not be written in English, but in some
machine-readable semantically equivalent format. For expository and design purposes,
however, it is useful to write down the meaning of each message in English. Writing
down the meaning of a message in English helps make apparent oversights, such as omit
ting the name of the intended recipient. This method is an example of the design
principle be explicit.

To illustrate that problems can be caused by of lack of explicitness, suppose that the
previous message 2 were:

2'. Charles ⇒ Alice: {“Use public key KBpub.”}Cpriv

If Alice receives this message, she can verify with Charles’s public key that Charles
sent the message, but Alice is unable to tell whose public key KBpub is. An adversary Luci
fer, whom Charles has met, but doesn’t know that he is bad, might use this lack of
explicitness as follows. First, Lucifer asks Charles for Lucifer’s public key, and Charles
replies:

2'. Charles ⇒ Lucifer: {“Use public key KLpub.”}Cpriv

Lucifer saves the reply, which is signed by Charles. Later when Alice asks Charles for
Bob’s public key, Lucifer replaces Charles’s response with the saved reply. Alice receives
the message:

2'. Someone ⇒ Alice: {“Use public key KLpub.”} Cpriv

Saltzer & Kaashoek Ch. 11, p. 55 June 24, 2009 12:29 am

11–56 CHAPTER 11 Information Security

From looking at the source address (Someone), she cannot be certain where message
2' came from. The source and destination fields of Chapter 7[on-line] are not authenti
cated, so Lucifer can replace the source address with Charles’s source address. This
change won’t affect the routing of the message, since the destination address is the only
address needed to route the message to Alice. Since the source address cannot be trusted,
the message itself has to tell her where it came from, and message 2' says that it came
from Charles because it is signed by Charles.

Believing that this message came from Charles, Alice will think that this message is
Charles’s response to her request for Bob’s key. Thus, Alice will incorrectly conclude that
KLpub is Bob’s public key. If Lucifer can intercept Alice’s subsequent messages to Bob,
Lucifer can pretend to be Bob, since Alice believes that Bob’s public key is KLpub and
Lucifer has KLpriv. This attack would be impossible with message 2 because Alice would
notice that it was Lucifer’s, rather than Bob’s key.

Returning to the correct protocol using message 2 rather than message 2', after receiv
ing Charles’s reply, Alice can then sign (with her own private key, which she already
knows) and encrypt (with Bob’s public key, which she just learned from Charles) any
message that she wishes to send to Bob. The reply can be handled symmetrically, after
Bob obtains Alice’s public key from Charles in a similar manner.

Alice and Bob are trusting Charles to correctly distribute their public keys for them.
Charles’s message (2) must be signed, so that Alice knows that it really came from
Charles, instead of being forged by an adversary. Since we presumed that Alice already
had Charles’s public key, she can verify Charles’ signature on message (2).

Bob cannot send Alice his public key over an insecure channel, even if he signs it. The
reason is that she cannot believe a message signed by an unknown key asserting its own
identity. But a message like (2) signed by Charles can be believed by Alice, if she trusts
Charles to be careful about such things. Such a message is called a certificate: it contains
Bob’s name and public key, certifying the binding between Bob and his key. Bob himself
could have sent Alice the certificate Charles signed, if he had the foresight to have already
obtained a copy of that certificate from Charles. In this protocol Charles plays the role
of a certificate authority (CA). The idea of using the signature of a trusted authority to
bind a public key to a principal identifier and calling the result a certificate was invented
in Loren Kohnfelder’s 1978 M.I.T. bachelor’s thesis.

When shared-secret instead of public-key cryptography is being used, we assume that
Alice and Charles have pre-established a shared-secret authentication key AkAC and a
shared-secret encryption key EkAC, and that Bob and Charles have similarly pre-estab
lished a shared-secret authentication key AkBC and a shared-secret encryption key EkBC.
Alice begins by sending a message to Charles (again, it does not need to be encrypted or
signed):

1. Alice ⇒ Charles: {“Please, give me keys for Bob’’}

Since shared-secret keys must be kept confidential, Charles must both sign and encrypt
the response, using the two shared-secret keys AkAC and EkAC. Charles would reply to
Alice:

Saltzer & Kaashoek Ch. 11, p. 56 June 24, 2009 12:29 am

11.5 Security Protocols 11–57

2. Charles ⇒ Alice: {‘‘Use temporary authentication key AkAB and temporary encryption
key EkAB to talk to Bob.’’}

Ek AC
AkAC

The notation {M}k denotes encrypting message M with encryption key k. In this example,
the message from Charles to Alice is signed by the shared-secret authentication key AkAC
and encrypted with the shared-secret encryption key EkAC.
The keys AkAB and EkAB in Charles’ reply are newly-generated random shared-secret
keys. If Charles would have replied with AkBC and EkBC instead of newly-generated keys,
then Alice would be able to impersonate Bob to Charles, or Charles to Bob.

It is also important is that message 2 is both authenticated with Charles’ and Alice’s
shared key AkAC and encrypted with their shared EkAC. The kAC’s are known only to
Alice and Charles, so Alice can be confident that the message came from Charles and that
only she and Charles know the kAB’s. The next step is for Charles to tell Bob the keys:

3. Charles ⇒ Bob: {“Use the temporary keys AkAB and EkAB to talk to Alice.’’}Ek BC
AkBC

This message is both authenticated with key AkBC and encrypted with key EkBC,
which are known only to Charles and Bob, so Bob can be confident that the message
came from Charles and that no one else but Alice and Charles know kAB’s.

From then on, Alice and Bob can communicate using the temporary key AkAB to
authenticate and the temporary key EkAB to encrypt their messages. Charles should
immediately erase any memory he has of the two temporary keys kAB’s. In such an
arrangement, Charles is usually said to be acting as a key distribution center (or KDC).
The idea of a shared-secret key distribution center was developed in classified military
circles and first revealed to the public in a 1973 paper by Dennis Branstad*. In the aca
demic community it first showed up in a paper by Needham and Schroeder†.

A common variation is for Charles to include message (3) to Bob as an attachment to
his reply (2) to Alice; Alice can then forward this attachment to Bob along with her first
real message to him. Since message (3) is both authenticated and encrypted, Alice is sim
ply acting as an additional, more convenient forwarding point so that Bob does not have
to match up messages arriving from different places.

Not all key distribution and authentication protocols separate authentication and
encryption (e.g., see Sidebar 11.6[on-line] about Kerberos); they instead accomplish
authentication by using carefully-crafted encrypting, with just one shared key per partic
ipant. Although having fewer keys seems superficially simpler, it is then harder to
establish the correctness of the protocols. It is simpler to use the divide-and-conquer
strategy: the additional overhead of having two separate keys for authentication and
encrypting is well worth the simplicity and ease of establishing correctness of the overall
design.

* Dennis K. Branstad. Security aspects of computer networks.American Institute of Aeronautics
and Astronautics Computer Network Systems Conference, paper 73–427 (April, 1973).

† Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large net
works of computers. Communications of the ACM 21, 12 (December, 1978), pages 993–999.

Saltzer & Kaashoek Ch. 11, p. 57 June 24, 2009 12:29 am

11–58 CHAPTER 11 Information Security

Sidebar 11.6: The Kerberos authentication system Kerberos* was developed in the late
1980’s for project Athena, a network of engineering workstations and servers designed to
support undergraduate education at M.I.T.† The first version in wide-spread use was Version
4, which is described here in simplified form; newer versions of Kerberos improve and extend
Version 4 in various ways, but the general approach hasn’t changed much.

A Kerberos service implements a unique identifier name space, called a realm, in which each
name of the name space is the principal identifier of either a network service or an individual
user. Kerberos also allows a confederation of Kerberos services belonging to different
organizations to implement a name space of realms. Principal names are of the form
"alice@Scholarly.edu", a principal identifier followed by the name of the realm to which that
principal belongs. Kerberos principal identifiers are case-sensitive, some consequences of which
were discussed in Section 3.3.4. Users and services are connected by an open, untrusted
network. The goal of Kerberos is to provide two-way authentication between a user and a
network service securely under the threat of adversaries.

A user authenticates the user’s identity and logs on to a realm using a shared-secret protocol
with the realm’s Kerberos Key Distribution Service (KKDS). Kerberos derives the shared-secret
key by cryptographically hashing a user-chosen password. During the name-discovery step
(e.g., a physical rendezvous with its administrator), the Kerberos service learns the principal
identifier for the user and the shared secret. When logging on, the user sends its principal
identifier to KKDS and asks it for authentication information to talk to service S:

Alice ⇒ KDDS: {“alice@Scholarly.edu”, S, Tcurrent}

and the service responds with a ticket identifying the user:

KKDS ⇒ Alice: {Ktmp, S, Lifetime, Tcurrent, ticket}Kalice

The service encrypts this response with the user’s shared secret. The verification step occurs
when the user decrypts the encrypted response. If Tcurrent and S in the response match with the
values in the request, then Kerberos considers the response authentic, and uses the information
in the decrypted response to authenticate the user to S. If the user does not posses the key (the
hashed password) that decrypts the response, the information inside the response is worthless.

The ticket is a kind of certificate; it binds the user name to a temporary key for use during one
session with service S. Kerberos includes the following information in the ticket:

ticket = {Ktmp, “alice@Scholarly.edu”, S, Tcurrent, Lifetime}Ks

(Sidebar continues)

* S[teven] P. Miller, B. C[lifford] Neuman, J[effrey] I. Schiller, and J[erome] H. Saltzer. Ker
beros authentication and authorization system. Section E.2.1 of Athena Technical Plan, M.I.T.
Project Athena, October 27, 1988.

† George A. Champine. M.I.T. Project Athena: A Model for Distributed Campus Comput
ing. Digital Press, Bedford, Massachusetts, 1991. ISBN 1–55558–072–6. 282 pages.

Saltzer & Kaashoek Ch. 11, p. 58 June 24, 2009 12:29 am

11.5 Security Protocols 11–59

The temporary key Ktmp is to allow a user to establish a continued chain of authentication
without having to go back to KKDS for each message exchange. The ticket contains a time
stamp, the principal identifier of the user, the principal identifier of the service, and a second
copy of the temporary key, all encrypted in the key shared between the KDDS and the service
S (e.g., a network file service).*

Kerberos includes in a request to a Kerberos-mediated network service the ticket identifying
the user. When the service receives a request, it authenticates the ticket using the information
in the ticket. It decrypts the ticket, checks that the timestamp inside is recent and that its own
principal identifier is accurate. If the ticket passes these tests, the service believes that it has the
authentic principal identifier of the requesting user and the Kerberos protocol is complete.
Knowing the user’s principal identifier, the service can then apply its own authorization system
to establish that the user has permission to perform the requested operation.

A user can perform cross-realm authentication by applying the basic Kerberos protocol twice:
first obtain a ticket from a local KDC for the other realm’s KDC, and then using that ticket
obtain a second ticket from the remote realm’s KDC for a service in the remote realm. For
cross-realm authentication to work, there are two prerequisites: (1) initialization: the two
realms must have previously agreed upon a shared-secret key between the realms and (2) name
discovery: the user and service must each know the other’s principal identifier and realm name.

Versions 4 and 5 of Kerberos are in widespread use outside of M.I.T. (e.g., they were adopted
by Microsoft). They are based on formerly classified key distribution principles first publicly
described in a paper by Branstad and are strengthened versions of a protocol described by
Needham and Schroeder (mentioned on page 11–57). These protocols don’t separate
authentication from confidentiality. They instead rely on clever use of cryptographic
operations to achieve both goals. As explained in Section 11.4.4 on page 11–53, this property
makes the protocols difficult to analyze.

* This description is a simplified version of the Kerberos protocol. One important omission
is that the ticket a user receives as a result of successfully logging in is actually one for a ticket-
granting service (TGS), from which the user can obtain tickets for other services. TGS provides
what is sometimes called a single login or single sign-on system, meaning that a user needs to
present a password only once to use several different network services.

For performance reasons, computer systems typically use public-key systems for dis
tributing and authenticating keys and shared-secret systems for sending messages in an
authenticated and confidential manner. The operations in public-key systems (e.g., rais
ing to an exponent) are more expensive to compute than the operations in shared-secret
cryptography (e.g., table lookups and computing several XORs). Thus, a session between
two parties typically follows two steps:

1. 	At the start of the session use public-key cryptography to authenticate each party
to the other and to exchange new, temporary, shared-secret keys;

Saltzer & Kaashoek Ch. 11, p. 59	 June 24, 2009 12:29 am

11–60 CHAPTER 11 Information Security

2. 	Authenticate and encrypt subsequent messages in the session using the temporary
shared-secret keys exchanged in step 1.

Using this approach, only the first few messages require computationally expensive
operations, while all subsequent messages require only inexpensive operations.

One might wonder why it is not possible to the design the ultimate key distribution
protocol once, get it right, and be done with it. In practice, there is no single protocol
that will do. Some protocols are optimized to minimize the number of messages, others
are optimized to minimize the cost of cryptographic operations, or to avoid the need to
trust a third party. Yet others must work when the communicating parties are not both
on-line at the same time (e.g., e-mail), provide only one-way authentication, or require
client anonymity. Some protocols, such as protocols for authenticating principals using
passwords, require other properties than basic confidentiality and authentication: for
example, such a protocol must ensure that the password is sent only once per session (see
Section 11.2).

11.5.2 Designing Security Protocols

Security protocols are vulnerable to several attacks in addition to the ones described in
Section 11.3.4 (page 11–41) and 11.4.2 (page 11–50) on the underlying cryptographic
transformations. The new attacks to protect against fall in the following categories:

• 	 Known-key attacks. An adversary obtains some key used previously and then uses
this information to determine new keys.

• 	 Replay attacks. An adversary records parts of a session and replays them later,
hoping that the recipient treats the replayed messages as new messages. These
replayed messages might trick the recipient into taking an unintended action or
divulging useful information to the adversary.

• 	 Impersonation attacks. An adversary impersonates one of the other principals in the
protocol. A common version of this attack is the person-in-the-middle attack,
where an adversary relays messages between two principals, impersonating each
principal to the other, reading the messages as they go by.

• 	 Reflection attacks. An adversary records parts of a session and replays it to the party
that originally sent it. Protocols that use shared-secret keys are sometimes
vulnerable to this special kind of replay attack.

The security requirements for a security protocol go beyond simple confidentiality
and authentication. Consider a replay attack. Even though the adversary may not know
what the replayed messages say (because they are encrypted), and even though the adver
sary may not be able to forge new legitimate messages (because the adversary doesn’t have
the keys used to compute authentication tags), the adversary may be able to cause mis
chief or damage by replaying old messages. The (duplicate) replayed messages may well

Saltzer & Kaashoek Ch. 11, p. 60	 June 24, 2009 12:29 am

11.5 Security Protocols 11–61

be accepted as genuine by the legitimate participants, since the authentication tag will
verify correctly.

The participants are thus interested not only in confidentiality and authentication,
but also in the three following properties:

• 	 Freshness. Does this message belong to this instance of this protocol, or is it a
replay from a previous run of this protocol?

• 	 Explicitness. Is this message really a member of this run of the protocol, or is it
copied from an run of another protocol with an entirely different function and
different participants?

• 	 Forward secrecy. Does this protocol guarantee that if a key is compromised that
confidential information communicated in the past stays confidential? A
protocol has forward secrecy if it doesn’t reveal, even to its participants, any
information from previous uses of that protocol.

We study techniques to ensure freshness and explicitness; forward secrecy can be
accomplished by using different temporary keys in each protocol instance and changing
keys periodically. A brief summary of standard approaches to ensure freshness and explic
itness include:

• 	 Ensure that each message contains a nonce (a value, perhaps a counter value, serial
number, or a timestamp, that will never again be used for any other message in this
protocol), and require that a reply to a message include the nonce of the message
being replied to, as well as its own new nonce value. The receiver and sender of
course have to remember previously used nonces to detect duplicates. The nonce
technique provides freshness and helps foil replay attacks.

• 	 Ensure that each message explicitly contain the name of the sender of the message
and of the intended recipient of the message. Protocols that omit this information,
and that use shared-secret keys for authentication, are sometimes vulnerable to
reflection attacks, as we saw in the example protocol in Section 11.5.1. Including
names provides explicitness and helps foil impersonation and reflection attacks.

• 	 Ensure that each message specifies the security protocol being followed, the version
number of that protocol, and the message number within this instance of that
protocol. If such information is omitted, a message from one protocol may be
replayed during another protocol and, if accepted as legitimate there, cause
damage. Including all protocol context in the message provides explicitness and
helps foil replay attacks.

The explicitness property is an example of the be explicit design principle: ensure that
each message be totally explicit about what it means. If the content of a message is not
completely explicit, but instead its interpretation depends on its context, an adversary
might be able to trick a receiver into interpreting the message in a different context and
break the protocol. Leaving the names of the participants out of the message is a violation
of this principle.

Saltzer & Kaashoek Ch. 11, p. 61	 June 24, 2009 12:29 am

11–62 CHAPTER 11 Information Security

When a protocol designer applies these techniques, the key-distribution protocol of
Section 11.5.1 might look more like:

1 Alice ⇒ Charles: {‘‘This is message number one of the ‘‘Get Public Key’’ protocol,
version 1.0. This message is sent by Alice and intended for Charles. This message was
sent at 11:03:04.114 on 3 March 1999. The nonce for this message is
1456255797824510. What is the public key of Bob?’’}Apriv

2 Charles ⇒ Alice: {‘‘This is message number two of the ‘‘Get Public Key’’ protocol,
version 1.0. This message is sent by Charles and intended for Alice. This message was
sent at 11:03:33.004 on 3 March 1999. This is a reply to the message with nonce
1456255797824510. The nonce for this message is 5762334091147624. Bob’s public
key is (…).’’}Cpriv

In addition, the protocol would specify how to marshal and unmarshal the different
fields of the messages so that an adversary cannot trick the receiver into unmarshaling the
message incorrectly.

In contrast to the public-key protocol described above, the first message in this pro
tocol is signed. Charles can now verify that the information included in the message
came indeed from Alice and hasn’t been tampered with. Now Charles can, for example,
log who is asking for Bob’s public key.

This protocol is almost certainly overdesigned, but it is hard to be confident about
what can safely be dropped from a protocol. It is surprisingly easy to underdesign a pro
tocol and leave security loopholes. The protocol may still seem to ‘‘work OK’’ in the
field, until the loophole is exploited by an adversary. Whether a protocol ‘‘seems to work
OK’’ for the legitimate participants following the protocol is an altogether different ques
tion from whether an adversary can successfully attack the protocol. Testing the security
of a protocol involves trying to attack it or trying to prove it secure, not just implement
ing it and seeing if the legitimate participants can successfully communicate with it.
Applying the safety net approach to security protocols tells us to overdesign protocols
instead of underdesign.

Some applications require properties beyond freshness, explicitness, and forward
secrecy. For example, a service way want to make sure that a single client cannot flood
the service with messages, overloading the service and making it unresponsive to legiti
mate clients. One approach to provide this property is for the service to make it expensive
for the client to generate legitimate protocol messages. A service could achieve this by
challenging the client to perform an expensive computation (e.g., computing the inverse
of a cryptographic function) before accepting any messages from the client. Yet other
applications may require that more than one party be involved (e.g., a voting applica
tion). As in designing cryptographic primitives, designing security protocols is difficult
and should be left to experts. The rest of this section presents some common security
protocol problems that appear in computer systems and shows how one can reason about
them. Problem set 43 explores how to use the signing and encryption primitives to
achieve some simple security objectives.

Saltzer & Kaashoek Ch. 11, p. 62 June 24, 2009 12:29 am

11.5 Security Protocols 11–63

11.5.3 Authentication Protocols

To illustrate the issues in designing security protocols, we will look at two simple authen
tication protocols. The second protocol uses a challenge and a response, which is an idea
found in many security protocols. These protocols also provide the motivation for other
protocols that we will discuss in subsequent sections.

A simple example of an authentication protocol is the one for opening a garage door
remotely while driving up to the garage. This application doesn't require strong security
properties (the adversary can always open the garage with a crowbar) but must be low
cost. We want a protocol that can be implemented inexpensively so that the remote can
be small, cheap, and battery-powered. For example, we want a protocol that involves
only one-way communication, so that the remote control needs only a transmitter. In
addition, the protocol should avoid complex operations so that the remote control can
use an inexpensive processor.

The parties in the protocol are the remote control, a receiving device (the receiver),
and an adversary. The remote control uses a wireless radio to transmit “open” messages
to a receiver, which opens the garage door if an authorized remote control sends the mes
sage. The goal of the adversary is to open the garage without the permission of the owner
of the garage.

The adversary is able to listen, replay, and modify the messages that the remote con
trol sends to the receiver over the wireless medium. Of course, the adversary can also try
to modify the remote control, but we assume that stealing the remote control is at least
as hard as breaking into the garage physically, in which case there isn't much need to also
subvert the remote control protocol.

The basic idea behind the protocol is for the receiver and the remote control to share
a secret. The remote control sends the secret to the receiver and if it matches the receiver's
secret, then the receiver opens the garage. If the adversary doesn't know the secret, then
the adversary cannot open the garage. Of course, if the secret is transmitted over the air
in clear text, the adversary can easily learn the secret, so we need to refine this basic idea.

A lightweight but correct protocol is as follows. At initialization, the remote control
and receiver agree on some random number, which functions as a shared-secret key, and
a random number, which is an initial counter value. When the remote control is pressed,
it sends the following message:

remote ⇒ receiver: {counter, HASH(key, counter)},

and increments the counter.
When receiving the message, the receiver performs the following operations:

1. 	verify hash: compute HASH(key, counter) and compare result with the one in

message

2. 	if hash verifies, then increment counter and open garage. If not, do nothing.

Because the holder of the remote control may have pressed the remote while out of
radio range of the receiver, the receiver generally tries successive values of counter

Saltzer & Kaashoek Ch. 11, p. 63	 June 24, 2009 12:29 am

11–64 CHAPTER 11 Information Security

between its previous values N and, e.g., N+100 in step 1. If it finds that one of the values
works, it resets the counter to that value and opens the garage.

This protocol meets our basic requirements. It doesn't involve two-way communica
tion. It does involve computing a hash but strong, inexpensive-to-compute hashes are
readily available in the literature. Most important, the protocol is likely to provide a good
enough level of security for this application.

The adversary cannot easily construct a message with the appropriate hash because
the adversary doesn't know the shared-secret key. The adversary could try all possible val
ues for the hash output (or all possible keys, if the keys are shorter than the hash output).
If the hash output and key are sufficiently long, then this brute-force attack would take
a long time. In addition, if necessary, the protocol could periodically re-initialize the key
and counter.

The protocol is not perfect. For example, it has a replay attack. Suppose an impatient
user presses the button on the remote control twice in close succession, the receiver
responds to the first signal and doesn't hear the second signal. An adversary who happens
to be recording the signals at the time can notice the two signals and guess that replaying
the recording of the second signal may open the garage door, at least until the next time
that legitimate user again uses the remote control. This weakness is probably acceptable.

The adversary can also launch a denial-of-service attack on the protocol (e.g., by jam
ming the radio signal remotely). The adversary, however, could also wreck the garage's
door physically, which is simpler. The owner can also always get out of the car, walk to
the garage, and use a physical key, so there is little motivation to deny access to the
remote control.

Protocols such as the one described above are used in practice. For example, the
Chamberlain garage door opener* uses a similar protocol with an extremely simple hash
function (multiplication by 3 in a finite field) and it computes the hash over the previous
hash, instead of over the counter and key. The simple hash probably provides a little less
security but it has the advantage that is cheap to implement. Other vendors seem to use
similar protocols, but it is difficult to confirm because this industry has a practice of
keeping its proprietary protocols secret, perhaps hoping to increase security through
obscurity, which violates the open design principle and historically hasn’t worked.

A version that is more secure than the garage-door protocol is used for authentication
of users who want to download their e-mail from an e-mail service. Protocols for this
application can assume two-way communication and exploit the idea of a challenge and
a response. One widely used challenge-response protocol is the following†:

1 Initialization. M1: Client ⇒ Server: (Opens a TCP connection)

2 Challenge. M2: Server ⇒ Client: {“This is server S at 9:35:20.00165 EDT, 22

* Chamberlain Group, Inc. v. Skylink Techs., Inc., 292 F. Supp. 2d 1040 (N.D. Ill. 2003); aff ’d 381
F.3d 1178 (U.S. App. 2004)

† Myers and M. Rose, Post Office Protocol Version 3, Internet Engineering Task Force Request For
Comments (RFC) 1939, May 1996.

Saltzer & Kaashoek Ch. 11, p. 64 June 24, 2009 12:29 am

11.5 Security Protocols 11–65

September 2006.”}

3 Response. M3: Client ⇒ Server: {“This is user U and the hash of M2 and U’s password

is:” HASH{M2, U’s password}”}

The server, which has its own copy of the secret password associated with user U, does
its own calculation of HASH{M2, U’s password}, and compares the result with the second
field of M3. If they match, it considers the authentication successful and it proceeds to
download the e-mail messages.

The protocol isn't vulnerable to the person-in-the-middle attack of the garage proto
col because the date and time in M2 functions as a nonce, which is included in the hash
of M3. But addressing the person-in-the-middle attack requires two-way communica
tion, which couldn't be used by the garage door opener.

Although this protocol is a step up over the garage door protocol, it has weaknesses
too. It is vulnerable to brute-force attacks. The adversary can learn the user name U from
M3. Then, later the adversary can connect to the mail server, receive M2, guess a pass
word for U, and see if the attempt is successful. Although each guess takes one round of
the protocol and leaves an audit trail on the server, this might not stop a determined
adversary.

A related weakness is that the protocol doesn't authenticate the server S, so the adver
sary can impersonate the server. The adversary tricks the client in connecting to a
machine that the adversary controls (e.g., by spoofing a DNS response for the name S).
When the client connects, the adversary sends M2, and receives a correct M3. Now the
adversary can do an off-line brute-force attack on the user's password, without leaving
an audit trail. The adversary can also provide the client with bogus e-mail.

These weaknesses can be addressed. For example, instead of sending messages in the
clear over a TCP connection, the protocol could set up a confidential, authenticated con
nection to the server using SSL/TLS (see Section 11.10). Then, the client and server can
run the challenge-response protocol over this connection. The server can also send the e-
mail messages over the connection so that they are protected too. SSL/TLS authenticates
all messages between a client and server and sends them encrypted. In addition, the client
can require that the server provides a certificate with which the client can verify that the
server is authentic. This approach could be further improved by using a client certificate
instead of using U's password, which is a weak secret and vulnerable to dictionary
attacks. Using SSL/TLS (either with or without client certificate) is common practice
today.

A challenge-response protocol is a valuable tool only if it is implemented correctly.
For example, a version of the UW IMAP server (a mail server that speaks the IMAP pro
tocol and developed by the University of Washington) contained an implementation
error that incorrectly specifies the conditions of successful authentication when using the
challenge-response protocol described above*. After authenticating three times unsuc
cessfully using the challenge-response protocol, the server allowed the fourth attempt to

* United States Computer Emergency Readiness Team (US-CERT), UW-imapd fails to properly
authenticate users when using CRAM-MD5, Vulnerability Note VU #702777, January 2005.

Saltzer & Kaashoek Ch. 11, p. 65 June 24, 2009 12:29 am

11–66 CHAPTER 11 Information Security

succeed; the intention was to fail the fourth attempt immediately, but the implementers
got the condition wrong. This error allowed an adversary to successfully authenticate as
any user on the server after three attempts. Such programming errors are all too often the
reason why the security of a system can be broken.

11.5.4 An Incorrect Key Exchange Protocol

The challenge-response protocol over SSL/TLS assumes SSL/TLS can set up a confiden
tial and authenticated channel, which requires that the sender and receiver exchange keys
securely over an untrusted network. It is possible to do such an exchange, but it must be
done with care. We consider two different protocols for key exchange. The first protocol
is incorrect, the second is (as far as anyone knows) correct. Both protocols attempt to
achieve the same goal, namely for two parties to use a public-key system to negotiate a
shared-secret key that can be used for encrypting. Both protocols have been published in
the computer science literature and systems incorporating them have been built.

In the first protocol, there are three parties: Alice, Bob, and a certificate authority
(CA). The protocol is as follows:

1 Alice ⇒ CA: {“Give me certificates for Alice and Bob”}
2 CA ⇒ Alice: {“Here are the certificates:”,

{Alice, Apub, T}CApriv, {Bob, Bpub, T}CApriv}

In the protocol, the CA returns certificates for Alice and Bob. The certificates bind the
names to public keys. Each certificate contains a timestamp T for determining if the cer
tificate is fresh. The certificates are signed by the CA.
Equipped with the certificates from the CA, Alice constructs an encrypted message for
Bob:

3 Alice ⇒ Bob: {“Here is my certificate and a proposed key:”,
{Alice, Apub, T}

CApriv
, {KAB, T}Apriv }

Bpub

The message contains Alice’s certificate and her proposal for a shared-secret key (KAB).

Bob can verify that Apub belongs to Alice by checking the validity of the certificate using

the CA’s public key. The time-stamped shared-secret key proposed by Alice is signed by

Alice, which Bob can verify using Apub. The complete message is encrypted with Bob’s

public key. Thus, only Bob should be able to read KAB.

Now Alice sends a message to Bob encrypted with KAB:

4 Alice ⇒ Bob: {“Here is my message:”, T}KAB

Bob should be able to decrypt this message, once he has read message 3. So, what is the
problem with this protocol? We suggest the reader pause for some time and try to dis
cover the problem before continuing to read further. As a hint, note that Alice has signed
only part of message 3 instead of the complete message. Recall that we should assume
that some of the parties to the protocol may be adversaries.

Saltzer & Kaashoek Ch. 11, p. 66 June 24, 2009 12:29 am

11.5 Security Protocols 11–67

The fact that there is a potential problem should be clear because the protocol fails
the be explicit design principle. The essence of the protocol is part of message 3, which
contains her proposal for a shared-secret key:

Alice ⇒ Bob: {KAB, T}Apriv

Alice tells Bob that KAB is a good key for Alice and Bob at time T, but the names of
Alice and Bob are missing from this part of message 3. The interpretation of this segment
of the message is dependent on the context of the conversation. As a result, Bob can use
this part of message 3 to masquerade as Alice. Bob can, for example, send Charles a claim
that he is Alice and a proposal to use KAB for encrypting messages.

Suppose Bob wants to impersonate Alice to Charles. Here is what Bob does:

1 Bob ⇒ CA: {“Give me the certificates for Bob and Charles”}

2 CA ⇒ Bob: {“Here are the certificates:”,
{Bob, Bpub, T'}

CApriv
, {Charles, Cpub, T'}CApriv}

3 Bob ⇒ Charles: {“Here is my certificate and a proposed key”:,
{Alice, Apub, T}

CApriv
, {KAB, T}Apriv }

Cpub

Bob’s message 3 is carefully crafted: he has placed Alice’s certificate in the message (which
he has from the conversation with Alice), and rather than proposing a new key, he has
inserted the proposal, signed by Alice, to use KAB, in the third component of the
message.

Charles has no way of telling that Bob’s message 3 didn’t come from Alice. In fact,
he thinks this message comes from Alice, since {KAB, T} is signed with Alice’s private key.
So he (erroneously) believes he has key that is shared with only Alice, but Bob has it too.
Now Bob can send a message to Charles:

1 Bob ⇒ Charles: {“Please send me the secret business plan. Yours truly, Alice.”}KAB

Charles believes that Alice sent this message because he thinks he received KAB from
Alice, so he will respond. Designing security protocols is tricky! It is not surprising that
Denning and Sacco*, the designers of this protocol, overlooked this problem when they
originally proposed this protocol.

An essential assumption of this attack is that the adversary (Bob) is trusted for some
thing because Alice first has to have a conversation with Bob before Bob can masquerade
as Alice. Once Alice has this conversation, Bob can use this trust as a toehold to obtain
information he isn’t supposed to know.

The problem arose because of lack of explicitness. In this protocol, the recipient can
determine the intended use of KAB (for communication between Alice and Bob) only by
examining the context in which it appears, and Bob was able to undetectably change that
context in a message to Charles.

Another problem with the protocol is its lack of integrity verification. An adversary
can replace the string “Here is my certificate and a proposed key” with any other string

* D. Denning and G. Sacco. Timestamps in key distribution protocols. Communication of the ACM
24, 8, pages 533–535, 1981.

Saltzer & Kaashoek Ch. 11, p. 67 June 24, 2009 12:29 am

11–68 CHAPTER 11 Information Security

(e.g., “Here are the President’s certificates”) and the recipient would have no way of
determining that this message is not part of the conversation. Although Bob didn’t
exploit this problem in his attack on Charles, it is a weakness in the protocol.

One way of repairing the protocol is to make sure that the recipient can always detect
a change in context; that is, can always determine that the context is authentic. If Alice
had signed the entire message 3, and Charles had verified that message 3 was properly
signed, that would ensure that the context is authentic, and Bob would not have been
able to masquerade as Alice. If we follow the explicitness principle, we should also change
the protocol to make the key proposal itself explicit, by including the name of Alice and
Bob with the key and timestamp and signing that entire block of data (i.e., {Alice, Bob,
KAB, T}Apriv).

Making Alice and Bob explicit in the proposal for the key addresses the lack of explic
itness, but doesn’t address the lack of verifying the integrity of the explicit information.
Only signing the entire message 3 addresses that problem.

You might wonder how it is possible that many people missed these seemingly obvi
ous problems. The original protocol was designed in an era before the modular
distinction between encrypting and signing was widely understood. It used encrypting
of the entire message as an inexpensive way of authenticating the content; there are some
cases where that trick works, but this is one where the trick failed. This example is
another one of why the idea of obtaining authentication by encrypting is now considered
to be a fundamentally bad practice.

11.5.5 Diffie-Hellman Key Exchange Protocol

The second protocol uses public-key cryptography to negotiate a shared-secret key.
Before describing that protocol, it is important to understand the Diffie-Hellman key
agreement protocol first. In 1976 Diffie and Hellman published the ground-breaking
paper New Directions in cryptography [Suggestions for Further Reading 1.8.5], which
proposed the first protocol that allows two users to exchange a shared-secret key over an
untrusted network without any prior secrets. This paper opened the floodgates for new
papers in cryptography. Although there was much work behind closed doors, between
1930 and 1975 few papers with significant technical contributions regarding cryptogra
phy were published in the open literature. Now there are several conferences on
cryptography every year.

The Diffie-Hellman protocol has two public system parameters: p, a prime number,
and g, the generator. The generator g is an integer less than p, with the property that for
every number n between 1 and p – 1 inclusive, there is a power k of g such that n = gk

(modulo p).
If Alice and Bob want to agree on a shared-secret key, they use p and g as follows. First,

Alice generates a random value a and Bob generates a random value b. Both a and b are
drawn from the set of integers {1, ..., p-2}. Alice sends to Bob: ga (modulo p), and Bob
sends to Alice: gb (modulo p).

Saltzer & Kaashoek Ch. 11, p. 68 June 24, 2009 12:29 am

11.5 Security Protocols 11–69

On receiving these messages, Alice computes gab = (gb)a (modulo p), and Bob com
putes gba = (ga)b (modulo p). Since gab = gba = k, Alice and Bob now have a shared-secret
key k. An adversary hearing the messages exchanged between Alice and Bob cannot com
pute that value because the adversary doesn’t know a and b; the adversary hears only p,
g, ga and gb.

The protocol depends on the difficulty of calculating discrete logarithms in a finite
field. It assumes that if p is sufficiently large, it is computationally infeasible to calculate
the shared-secret key k = gab (modulo p) given the two public values ga (modulo p) and
gb (modulo p). It has been shown that breaking the Diffie-Hellman protocol is equivalent
to computing discrete logarithms under certain assumptions.

Because the participants are not authenticated, the Diffie-Hellman protocol is vulner
able to a person-in-the-middle attack, similar to the one in Section 11.5.4. The
importance of the Diffie-Hellman protocol is that it is the first example of a much more
general cryptographic approach, namely the derivation of a shared-secret key from one
party's public key and another party's private key. The second protocol is a specific
instance of this approach, and addresses the weaknesses of the Denning-Sacco protocol.

11.5.6 A Key Exchange Protocol Using a Public-Key System

The second protocol uses a Diffie-Hellman-like exchange to set up keys for encrypting
and authentication. The protocol is designed to set up a secure channel from a client to
a service in the SFS self-certifying file system [Suggestions for Further Reading 11.4.3];
a similar protocol is also used in the Taos distributed operating system [Suggestions for
Further Reading 11.3.2]. Web clients and servers use the more complex SSL/TLS pro
tocol, which is described in Section 11.10.

The goal of the SFS protocol is to create a secure (authenticated and encrypted) con
nection between a client and a server that has a well-known public key. The client wants
to be certain that it can authenticate the server and that all communication is confiden
tial, but at the end of this protocol, the client will still be unauthenticated; an additional
protocol will be required to identify and authenticate the client.

The general plan is to create two shared-secret nonce keys for each connection
between a client and a server. One nonce key (Kcs) will be used for authentication and
encryption of messages from client to server, the other (Ksc) for authentication and
encryption of messages from server to client. Each of these nonce keys will be constructed
using a Diffie-Hellman-like exchange in which the client and the server each contribute
half of the key.

To start, the client fabricates two nonce half-keys, named Kc-cs and Kc-sc, and also a
nonce private and public key pair: Tpriv and Tpub. Tpub is, in effect, a temporary name for
this connection with this anonymous client.

The client sends to the service a request message to open a connection, containing
Tpub, Kc-cs, and Kc-sc. The client encrypts the latter two with Spub, the public key of the
service:

Saltzer & Kaashoek Ch. 11, p. 69 June 24, 2009 12:29 am

11–70 CHAPTER 11 Information Security

Client ⇒ service: {“Here is a temporary public key Tpub and two key halves

encrypted with your public key:”, {Kc-cs, Kc-sc}Spub}

The protocol encrypts Kc-cs, and Kc-sc to protect against eavesdroppers. Since Tpub is a
public key, there is no need to encrypt it.

The service can decrypt the keys proposed by the client with its private key, thus
obtaining the three keys. At this point, the service has no idea who the client may be, and
because the message may have been modified by an adversary, all it knows is that it has
received three keys, which it calls Tpub', Kc-cs' and Kc-sc', and which may or may not be
the same as the corresponding keys fabricated by the client. If they are the same, then Kc

' and Kc-sc' are shared secrets known only to the client and the server.cs
The service now fabricates two more nonce half-keys, named Ks-cs and Ks-sc. It sends

a response to the client, consisting of these two half-keys encrypted with Tpub':

Service ⇒ client: {“Here are two key halves encrypted with your temporary
public key:”, {Ks-cs, Ks-sc}Tpub}

Unfortunately, even if Tpub' = Tpub, Tpub is public, so the client has no assurance that
the response message came from the service; an adversary could have sent it or modified
it. The client decrypts the message using Tpriv, to obtain Ks-cs' and Ks-sc'.

At this point in the protocol, the two parties have the following components in hand:

• 	 Client: Spub, Tpub, Kc-cs, Kc-sc, Ks-cs', Ks-sc'
• 	 Server: Spub, Tpub', Kc-cs', Kc-sc', Ks-cs, Ks-sc

Now the client calculates

• 	 Kcs ← HASH (“client to server”, Spub, Tpub, Ks-cs', Kc-cs)
• 	 Ksc ← HASH (“server to client”, Spub, Tpub, Ks-sc', Kc-sc)

and the server calculates

• 	 Kcs' ← HASH (“client to server”, Spub, Tpub', Ks-cs, Kc-cs')
• 	 Ksc ’ ← HASH (“server to client”, Spub, Tpub', Ks-sc, Kc-sc ')

If all has gone well (that is, there have been no attacks), Kcs = Kcs' and Ksc = Ksc'.
At this point there are three concerns:

1. 	An adversary may have replaced one or more components in such a way that the
two parties do not have matching sets. If so, and assuming that the hash function
is cryptographically secure, about half the bits of Kcs will not match Kcs'; the same
will be true for Ksc and Ksc '. Ksc and Kcs are about to be used as keys, so the parties
will quickly discover any such mismatch.

2. 	An adversary may have replaced a component in such a way that both parties still
have matching sets. But if we compare the components of Kcs and Kcs', we notice
that at least one of the parties uses a personally chosen (unprimed) version of every
component, and the adversary could not have changed that version, so there is no
way for an adversary to make a matching change for both parties.

Saltzer & Kaashoek Ch. 11, p. 70	 June 24, 2009 12:29 am

11.5 Security Protocols 11–71

3. 	An adversary may have been able to discover all of the components and thus be
able to calculate Ksc, Kcs, or both. But the values of Kc-cs and Kc-sc were created by
the client and encrypted under Spub before sending them to the service, so only the
client and the service know those two components.

If Kcs = Kcs' and Ksc = Ksc', the two parties have two keys that only they know, and only
the service and this client could have calculated them. In addition, because they are cal
culated using Ks-sc, Kc-sc, Ks-cs, and Kc-cs, which are nonces created just for this exchange,
both parties are ensured that Kcs and Ksc are fresh. In summary, Kcs and Ksc are newly gen
erated shared secrets.

The protocol proceeds with the client generating a shared-secret authentication key
Kssa-cs and a shared-secret encryption key Ksse-cs from Kcs, perhaps by simply using the
first half of Kcs as Kssa-cs and the second half as Ksse-cs. The client can now prepare and
send an encrypted and authenticated request:

{M}Ksse-cs
Kssa-cs

to the server. The server generates the same shared-secret authentication key Kssa-cs and
a shared-secret encryption key Ksse-cs from Kcs' and it can now try to decrypt and authen
ticate M. If the authentication succeeds, the server knows that Kcs = Kcs'.

The server performs a similar procedure based on Ksc for its response. If the client suc
cessfully authenticates the response the client knows Ksc = Ksc'. The fact that it received
a response tells it that the server successfully verified that Kcs = Kcs'.

From now on, the client knows that it is talking to the server associated with Spub,
and the connection is confidential. The server knows that the connection is confidential
and that all messages are coming from the same source, but it does not know what that
source is. If the server wants to know the source, it can ask and, for example, demand a
password to authenticate the identity that the source claims.

To ensure forward secrecy, the client periodically repeats the whole protocol period
ically. At regular intervals (e.g., every hour), the client discards the temporary keys Tpub
and Tpriv, generates a new public key Tpub and private key Tpriv, and runs the protocol
again.

11.5.7 Summary

This section described several security protocols to obtain different objectives. We stud
ied a challenge-response protocol to open garage doors. We studied an incorrect protocol
to set up a secure communication channel between two parties. Then, we studied a cor
rect protocol for that same purpose that provides confidentiality but doesn’t authenticate
the participants. Finally, we studied a protocol for setting up a secure communication
channel that provides both confidentiality and authenticity. Protocols for setting up
secure channels become imporant whenever the participants are separated by a network.
Section 11.10 describes a protocol for setting up secure channels in the World-Wide
Web.

Saltzer & Kaashoek Ch. 11, p. 71	 June 24, 2009 12:29 am

11–72 CHAPTER 11 Information Security

Many systems have additional security requirements, and therefore may need proto
cols with different features. For example, a system that provides anonymous e-mail must
provide an authenticated and confidential communication channel between two parties
with the property that the receiver knows that a message came from the same source as
previous messages and that nobody else has read the message, but must also hide the
identity of the sender from the receiver. Such a system requires a more sophisticated
design and protocols because hiding the identity of the sender is a difficult problem. The
receiver may be able to learn the Internet address from which some of the messages were
sent or may be able to observe traffic on certain communication links; to make anony
mous e-mail resist such analysis requires elaborate protocols that are beyond the scope of
this text, but see, for example, Chaum’s paper for a solution [Suggestions for Further
Reading 11.5.6]. Security protocols are also an active area of research and researchers
continuously develop novel systems and protocols for new scenarios or for particular
challenging problems such as electronic voting, which may require keeping the identity
of the voter secret, preventing a voter from voting more than once, allowing the voter to
verify that the vote was correctly recorded, and permitting recounts. The interested
reader is encouraged to consult the professional literature for developments.

11.6 Authorization: Controlled Sharing
Some data must stay confidential. For example, users require that their private authenti
cation key stay confidential. Users wish to keep their password and credit card numbers
confidential. Companies wish to keep the specifics of their upcoming products confiden
tial. Military organizations wish to keep attack plans confidential.

The simplest way of providing confidentiality of digital data is to separate the pro
grams that manipulate the data. One way of achieving that is to run each program and
its associated data on a separate computer and require that the computers cannot com
municate with each other.

The latter requirement is usually too stringent: different programs typically need to
share data and strict separation makes this sharing impossible. A slight variation, how
ever, of the strict separation approach is used by military organizations and some
businesses. In this variation, there is a trusted network and an untrusted network. The
trusted network connects trusted computers with sensitive data, and perhaps uses
encryption to protect data as it travels over the network. By policy, the computers on the
untrusted network don’t store sensitive data, but might be connected to public networks
such as the Internet. The only way to move data between the trusted and untrusted net
work is manual transfer by security personnel who can deny or authorize the transfer
after a careful inspection of the data.

For many services, however, this slightly more relaxed version of strict isolation is still
inconvenient because users need to have the ability to share more easily but keep control
over what is shared and with whom. For example, users may want share files on a file
server, but have control over whom they authorize to have access to what files. As another

Saltzer & Kaashoek Ch. 11, p. 72 June 24, 2009 12:29 am

11.6 Authorization: Controlled Sharing 11–73

example, many users acquire programs created by third parties, run them on their com
puter, but want to be assured that their confidential data cannot be read by these
untrusted programs. This section introduces authorization systems that can support
these requirements.

11.6.1 Authorization Operations

We can distinguish three primary operations in authorization systems:

• 	 authorization. This operation grants a principal permission to perform an
operation on an object.

• 	 mediation. This operation checks whether or not a principal has permission to
perform an operation on a particular object.

• 	 revocation. This decision removes a previously-granted permission from a
principal.

The agent that makes authorization and revocation decisions is known as an author
ity. The authority is the principal that can increase or decrease the set of principals that
have access to a particular object by granting or revoking respectively their permissions.
In this chapter we will see different ways how a principal can become an authority.

The guard is distinct from, but operates on behalf of the authority, making mediation
decisions by checking the permissions, and denying or allowing a request based on the
permissions.

We discuss three models that differ in the way the service keeps track of who is autho
rized and who isn’t: (1) the simple guard model, (2) the caretaker model, and (3) the
flow-control model. The simple guard model is the simplest one, while flow control is
the most complex model and is used primarily in heavy-duty security systems.

11.6.2 The Simple Guard Model

The simple guard model is based on an authorization matrix, in which principals are the
rows and objects are the columns. Each entry in the matrix contains the permissions that
a principal has for the given object. Typical permissions are read access and write access.
When the service receives a request for an object, the guard verifies that the requesting
principal has the appropriate permissions in the authorization matrix to perform the
requested operation on the object, and if so, allows the request.

The authority of an object is the principal who can set the permissions for each prin
cipal, which raises the question how a principal can become an authority. One common
design is that the principal who creates an object is automatically the authority for that
object. Another option is to have an additional permission in each entry of the authori
zation matrix that grants a principal permission to change the permissions. That is, the
permissions of an object may also include a permission that grants a principal authority
to change the permissions for the object.

Saltzer & Kaashoek Ch. 11, p. 73	 June 24, 2009 12:29 am

11–74 CHAPTER 11 Information Security

When a principal creates a new object, the access-control system must determine
which is the appropriate authority for the new object and also what initial permissions it
should set. Discretionary access-control systems make the creator of the object the author
ity and allow the creator to change the permission entries at the creator’s discretion. The
creator can specify the initial permission entries as an argument to the create operation
or, more commonly, use the system’s default values. Non-discretionary access-control sys
tems don’t make the creator the authority but chose an authority and set the permission
entries in some other way, which the creator cannot change at the creator’s discretion. In
the simple guard model, access control is usually discretionary. We will return to non
discretionary access control in Section 11.6.5.

There are two primary instances of the simple guard model: list systems, which are
organized by column, and ticket systems, which are organized by row. The primary way
these two systems differ is who stores the authorization matrix: the list system stores col
umns in a place that the guard can refer to, while the ticket system stores rows in a place
that principals have access to. This difference has implications on the ease of revocation.
We will discuss ticket systems, list systems, and systems that combine them, in turn.

11.6.2.1 The Ticket System
In the ticket system, each guard holds a ticket for each object it is guarding. A principal
holds a separate ticket for each different object the principal is authorized to use. One
can compare the set of tickets that the principal holds to a ring with keys. The set of tick
ets that principal holds determines exactly which objects the principal can obtain access
to. A ticket in a ticket-oriented system is usually called a capability.

To authorize a principal to have access to an object, the authority gives the principal
a matching ticket for the object. If the principal wishes, the principal can simply pass this
ticket to other principals, giving them access to the object.

To revoke a principal’s permissions, the authority has to either hunt down the prin
cipal and take the ticket back, or change the guard’s ticket and reissue tickets to any other
principals who should still be authorized. The first choice may be hard to implement; the
second may be disruptive.

11.6.2.2 The List System
In the list system, revocation is less disruptive. In the list system, each principal has a token
identifying the principal (e.g., the principal’s name) and the guard holds a list of tokens
that correspond to the set of principals that the authority has authorized. To mediate, a
guard must search its list of tokens to see if the principal’s token is present. If the search
for a match succeeds, the guard allows the principal access; if not, the guard denies that
principal access. To revoke access, the authority removes the principal’s token from the
guard’s list. In the list system, it is also easy to perform audits of which principals have
permission for a particular object because the guard has access to the list of tokens for
each object. The list of tokens is usually called an access-control list (ACL).

Saltzer & Kaashoek Ch. 11, p. 74 June 24, 2009 12:29 am

11.6 Authorization: Controlled Sharing 11–75

Table 11.1: Comparison of access control systems

System Advantage Disadvantage

Ticket Quick access check Revocation is difficult

Tickets can be passed around Tickets can be passed around

List Revocation is easy Access check requires searching a list

Audit possible

Agency List available Revocation might be hard

11.6.2.3 Tickets Versus Lists, and Agencies
Ticket and list systems each have advantages over the other. Table 11.1 summarizes the
advantages and disadvantages. The differences in the ticket and list system stem primarily
from who gathers, stores, and searches the authorization information. In the ticket sys
tem, the responsibility for gathering, storing, and searching the tickets rests with the
principal. In the list system, responsibility for gathering, storing, and searching the
tokens on a list rests with the guard. In most ticket systems, the principals store the tick
ets and they can pass tickets to other principals without involving the guard. This
property makes sharing easy (no interaction with the authority required), but makes it
hard for an authority to revoke access and for the guard to prepare audit trails. In the list
system, the guard stores the tokens and they identify principals, which makes audit trails
possible; on the other hand, to grant another principal access to an object requires an
interaction between the authority and the guard.

The tokens in the ticket and list systems must be protected against forgery. In the
ticket system, tickets must be protected against forgery. If an adversary can cook up valid
tickets, then the adversary can obtain access to any object. In the list system, the token
identifying the principal and the access control list must be protected. If an adversary can
cook up valid principal identifiers and change the access control list at will, then the
adversary can have access to any object. Since the principal identifier tokens and access
control lists are in the storage of the system, protecting them isn’t too hard. Ticket stor
age, on the other hand, may be managed by the user, and in that case protecting the
tickets requires extra machinery.

A natural question to ask is if it is possible to get the best of both ticket and list sys
tems. An agency can combine list and ticket systems by allowing one to switch from a
ticket system to a list system, or vice versa. For example, at a by-invitation-only confer
ence, upon your arrival, the organizers may check your name against the list of invited
people (a list system) and then hand you a batch of coupons for lunches, dinners, etc. (a
ticket system).

Saltzer & Kaashoek Ch. 11, p. 75 June 24, 2009 12:29 am

11–76 CHAPTER 11 Information Security

11.6.2.4 Protection Groups
Cases often arise where it would be inconvenient to list by name every principal who is
to have access to each of a large number of objects that have identical permissions, either
because the list would be awkwardly long, or because the list would change frequently,
or to ensure that several objects have the same list. To handle this situation, most access
control list systems implement protection groups, which are principals that may be used
by more than one user. If the name of a protection group appears in an access control list
for an object, all principals who are members of that protection group share the permis
sions for that object.

A simple way to implement protection groups is to create an access control list for
each group, consisting of a list of tokens representing the individual principals who are
authorized to use the protection group’s principal identifier. When a user logs in, the sys
tem authenticates the user, for example, by a password, and identifies the user’s token.
Then, the system looks up the user’s token on each group’s access control list and gives
the user the group token for each protection group the user belongs to. The guard can
then mediate access based on the user and group tokens.

11.6.3 Example: Access Control in UNIX

The previous section described access control based on a simple guard model in the
abstract. This section describes a concrete access control system, namely the one used by
UNIX (see Section 2.5). UNIX was originally designed for a computer shared among mul
tiple users, and therefore had to support access control. As described in Section 4.4, the
Network File System (NFS) extends the UNIX file system to shared file servers, reinforc
ing the importance of access control, since without access control any user has access to
all files. The version of the UNIX system described in Section 2.5 didn’t provide network
ing and didn’t support servers well; modern UNIX systems, however, do, which further
reenforces the need of security. For this reason, this section mostly describes the core
access control features that one can find in a modern UNIX system, which are based on
the features found in early UNIX systems. For the more advanced and latest features the
reader is encouraged to consult the professional literature.

One of the benefits of studying a concrete example is that it makes the clear the
importance of the dynamics of use in an access control system. How are running pro
grams associated with principals? How are access control lists changed? Who can create
new principals? How does a system get initialized? How is revocation done? From these
questions it should be clear that the overall security of a computer system is to a large
part based on how carefully the dynamics of use have been thought through.

11.6.3.1 Principals in UNIX

The principals in UNIX are users and groups. Users are named by a string of characters.
A user name with some auxiliary information is stored in a file that is historically called
the password file. Because it is inconvenient for the kernel to use character strings for user

Saltzer & Kaashoek Ch. 11, p. 76 June 24, 2009 12:29 am

11.6 Authorization: Controlled Sharing 11–77

names, it uses fixed-length integer names (called UIDs). The UID of each user is stored
along with the user name in a file called colloquially the password file (/etc/passwd). The
password file usually contains other information for each user too; for example, it con
tains the name of the program that a users wants the system to run when the user logs in.

A group is a protection group of users. Like users, groups are named by a string of
characters. The group file (“/etc/group”) stores all groups. For each group it stores the
group name, a fixed-length integer name for the group (called the GID), and the user
names (or UIDs depending on which version of UNIX) of the users who are a member of
the group. A user can be in multiple groups; one of these group is the user’s default
group. The name of the default group is stored in the user’s entry in the password file.

The principal superuser is the one used by system administrators and has full author
ity; the kernel allows the superuser to change any permissions. The superuser is also
called root, and has the UID 0.

A system administrator usually creates several service principals to run services instead
of for running them with superuser authority. For example, the principal named “www”
runs the Web server in a typical UNIX configuration. The reason to do so is that if the
server is compromised (e.g., through a buffer overrun attack), then the adversary acquires
only the privileges of the principal www, and not those of the superuser.

11.6.3.2 ACLs in UNIX

UNIX represents all shared objects (files, devices, etc.) as files, which are protected by the
UNIX kernel (the guard). All files are manipulated by programs, which act on behalf of
some principal. To isolate programs from one another, UNIX runs each program in its
own address space with one or more threads (called a process in UNIX). All mediation
decisions can be viewed as whether or not a particular process (and thus principal) should
be allowed to have access to a particular file. UNIX implements this mediation using
ACLs.

Each file has an owner, a principal that is the authority for the file. The UID of the
owner of a file is stored in a file’s inode (see page 2.5.11). Each file also has an owning
group, designated by a GID stored in the file’s inode. When a file is created its UID is
the UID of the principal who created the file and its GID is the GID of principal’s
default group. The owner of a file can change the owner and group of the file.

The inode for each file also stores an ACL. To avoid long ACLs, UNIX ACLs contain
only 3 entries: the UID of the owner of the file, a group identifier (GID), and other.
“Other’’ designates all users with UIDs and GIDs different from the ones on the ACL.

This design is sufficient for a time-sharing system for a small community, where all
one needs is some privacy between groups. But when such a system is attached to the
Internet, it may run services such as a Web service that provide access to certain files to
any user on the Internet. The Web server runs under some principal (e.g., “www”).
The UID associated with that principal is included in the “other” category, which means
that “other” can mean anyone in the entire Internet. Because allowing access to the entire
world may be problematic, Web servers running under UNIX usually implement their
own access restrictions in addition to those enforced by the ACL. (But recall the discus-

Saltzer & Kaashoek Ch. 11, p. 77 June 24, 2009 12:29 am

11–78 CHAPTER 11 Information Security

sion of the TCB on page 11–26. This design drags the Web server inside the TCB.) For
reasons such as these, file servers that are designed for a larger community or to be
attached to the Internet, such as the Andrew File System [Suggestions for Further Read
ing 4.2.3], support full-blown ACLs.

Per ACL entry, UNIX keeps several permissions: READ (if set, read operations are
allowed), WRITE (if set, write operations are allowed), and EXECUTE (if set, the file is allowed
to be executed as a program). So, for example, the file “y’’ might have an ACL with UID
18, GID 20, and permissions “rwxr-xr--’’. This information says the owner (UID 18) is
allowed to read, write, and execute file “y”, users belonging to group 20 are allowed to
read and execute file “y”, and all other users are allowed only read access. The owner of
a file has the authority to change the permission on the file.

The initial owner and permission entries of a new file are set to the corresponding val
ues of the process that created the file. What the default principal and permissions are of
a process is explained next.

11.6.3.3 The Default Principal and Permissions of a Process
The kernel stores for a process the UID and the GIDs of the principal on whose behalf
the process is running. The kernel also stores for a process the default permissions for files
that that process may create. A common default permission is write permission for the
owner, and read permission for the owner, group, and other. A process can change its
default permissions with a special command (called UMASK).

By default, a process inherits the UID, GIDs, and default permissions of the process
that created it. However, if the SETUID permission of a file is set on—a bit in a file’s
inode—the process that runs the program acquires the UID of the principal that owns
the file storing the program. Once a process is running, a process can invoke the SETUID

supervisor call to change its UID to one with fewer permissions.
The SETUID permission of a file is useful for programs that need to increase their priv

ileges to perform privileged operations. For example, an e-mail delivery program that
receives an e-mail for a particular user must be able to append the mail to the user’s mail
box. Making the target mailbox writable for anyone would allow any user to destroy
another user’s mailbox. If a system administrator sets the SETUID permission on the mail
delivery program and makes the program owned by the superuser, then the mail program
will run with superuser privileges. When the program receives an e-mail for a user, the
program changes its UID to the target user’s, and can append the mail to the user’s mail
box. (In principle the delivery program doesn’t have to change to the target’s UID, but
changing the UID is better practice than running the complete program with superuser
privileges. It is another example of the principle of least privilege.)

Another design option would be for UNIX to set the ACL on the mailbox to include
the principal of the e-mail deliver program. Unfortunately, because UNIX ACLs are lim
ited to the user, group, and other entries, they are not flexible enough to have an entry
for a specific principal, and thus the SETUID plan is necessary. The SETUID plan is not ideal
either, however, because there is a temptation for application designers to run applica
tions with superuser privileges and never drop them, violating the principle of least

Saltzer & Kaashoek Ch. 11, p. 78 June 24, 2009 12:29 am

11.6 Authorization: Controlled Sharing 11–79

privilege. In retrospect, UNIX’s plan for security is weak, and the combination of buffer-
overrun attacks and applications running with too much privilege has led to many secu
rity breaches. To design an application to run securely on UNIX requires much careful
thought and sophisticated use of UNIX.

With the exception of the superuser, only the principal on whose behalf a process is
running can control a process (e.g., stop it). This design makes it difficult for an adver
sary who successfully compromised one principal to damage other processes that act on
behalf of a different principal.

11.6.3.4 Authenticating Users
When a UNIX computer starts, it boots the kernel (see Sidebar 5.3). The kernel starts the
first user program (called init in UNIX) and runs it with the superuser authority. The init
program starts among other things a login program, which also executes with the supe
ruser authority. Users type in their user name and a password to a login program. When
a person types in a name and password, the login program hashes the password using a
cryptographic hash (as was explained on page 11–32) and compares it with the hash of
the password that it has on file that corresponds to the user name the person has claimed.
If they match, the login program looks up the UID, GIDs, and the starting program for
that user, uses SETUID to change the UID of the login program to the user’s UID, and runs
the user’s starting program. If hashes don’t match, the login program denies access.

As mentioned earlier, the user name, UID, default GID, and other information are
stored in the password file (named “/etc/passwd”). At one time, hashed passwords were
also stored in the password file. But, because the other information is needed by many
programs, including programs run by other users, most systems now store the hashed
password in a separate file called the “shadow file” that is accessible only to the superuser.
Storing the passwords in a limited access file makes it harder for an adversary to mount
a dictionary attack against the passwords. Users can change their password by invoking
a SETUID program that can write the shadow file. Storing public user information in the
password file and sensitive hashed passwords in the shadow file with more restrictive per
missions is another example of applying the principle of least privilege.

11.6.3.5 Access Control Check
Once a user is logged in, subsequent access control is performed by the kernel based on
UIDs and GIDs of processes, using a list system. When a process invokes OPEN to use a
file, the process performs a system call to enter the kernel. The kernel looks up the UID
and GIDs for the process in its tables. Then, the kernel performs the access check as
follows:

1. 	If the UID of the process is 0 (superuser), the process has the necessary
permissions by default.

2. 	If the UID of the process matches the UID of the owner of the file, the kernel
checks the permissions in the ACL entry for owner.

Saltzer & Kaashoek Ch. 11, p. 79	 June 24, 2009 12:29 am

11–80 CHAPTER 11 Information Security

3. 	If UIDs do not match, but if one of the process’s GIDs match the GID of the file,
the kernel checks the permissions in the ACL entry for group.

4. 	If the UID and GIDs do not match, the kernel checks the permissions in the ACL
entry for “other” users.

If the process has the appropriate permission, the kernel performs the operation; oth
erwise, it returns a permission error.

11.6.3.6 Running Services
In addition to starting the login program, the init program usually starts several services
(e.g., a Web server, an e-mail server, a X Windows System server, etc.). The services often
start run with the privileges of the superuser principal, but switch to a service principal
using SETUID. For example, a well-designed Web server changes its UID from the supe
ruser principal to the www principal after it did the few operations that require superuser
privileges. To ensure that these services have limited access if an adversary compromises
one of them, the system administrator sets file permissions so that, for example, the prin
cipal named www has permission to access only the files it needs. In addition, a Web
server designed with security in mind will also use the CHROOT call (see Section 2.5.1) so
that it can name only the files in its corner of file system. These measures ensure that an
adversary can do only restricted harm when compromising a service. These measures are
examples of both the paranoid design attitude and of the principle of least privilege.

11.6.3.7 Summary of UNIX Access Control
The UNIX login program can be viewed as an access control system following the pure
guard model that combines authentication of users with mediating access to the com
puter to which the user logs in. The guard is the login program. The object is the UNIX

system. The principal is the user. The ticket is the password, which is protected using a
cryptographic hash function. If the tickets match, access is allowed; otherwise, access is
denied. We can view the whole UNIX system as an agent system. It switches from a simple
ticket-based guard system (the login program) to a list-oriented system (the kernel and
file system). UNIX thus provides a comprehensive example of the simple guard model. In
the next two sections we investigate two other models for access control.

11.6.4 The Caretaker Model

The caretaker model generalizes the simple guard model. It is the object-oriented version
of the simple guard model. The simple guard model checks permissions for simple meth
ods such as read, write, and execute. The caretaker model verifies permissions for
arbitrary methods. The caretaker can enforce arbitrary constraints on access to an object,
and it may interpret the data stored in the object to decide what to do with a given
request.

Example access-control systems that follow the caretaker model are:

Saltzer & Kaashoek Ch. 11, p. 80	 June 24, 2009 12:29 am

11.6 Authorization: Controlled Sharing 11–81

• 	 A bank vault that can be opened at 5:30 pm, but not at any other time.
• 	 A box that can be opened only when two principals agree.
• 	 Releasing salary information only to principals who have a higher salary.
• 	 Allowing the purchase of a book with a credit card only after the bank approves

the credit card transaction.

The hazard in the caretaker model is that the program for the caretaker is more com
plex than the program for the guard, which makes it easy to make mistakes and leave
loopholes to be exploited by adversaries. Furthermore, the specification of what the care
taker’s methods do and how they interact with respect to security may be difficult to
understand, which may lead to configuration errors. Despite these challenges, database
systems typically support the caretaker model to control access to rows and columns in
tables.

11.6.5 Non-Discretionary Access and Information Flow Control

The description of authorization has so far rested on the assumption that the principal
that creates an object is the authority. In the UNIX example, the owner of a file is the
authority for that file; the owner can give all permissions including the ability to change
the ACL, to another user.

This authority model is discretionary: an individual user may, at the user’s own dis
cretion, authorize other principals to obtain access to the objects the user creates. In
certain situations, discretionary control may not be acceptable and must be limited or
prohibited. In this case, the authority is not the principal who created the object, but
some other principal. For example, the manager of a department developing a new prod
uct line may want to compartmentalize the department’s use of the company computer
system to ensure that only those employees with a need to know have access to informa
tion about the new product. The manager thus desires to apply the least privilege
principle. Similarly, the marketing manager may wish to compartmentalize all use of the
company computer for calculating product prices, since pricing policy may be sensitive.

Either manager may consider it unacceptable that any individual employee within the
department can abridge the compartments merely by changing an access control list on
an object that the employee creates. The manager has a need to limit the use of discre
tionary controls by the employees. Any limits the manager imposes on authorization are
controls that are out of the hands of the employees, and are viewed by them as non
discretionary.

Similar constraints are imposed in military security applications, in which not only
isolated compartments are required, but also nested sensitivity levels (e.g., unclassified,
confidential, secret, and top secret) that must be modeled in the authorization mechanics
of the computer system. Commercial enterprises also use non-discretionary controls. For
example, a non-disclosure agreement may require a person for the rest of the person’s life
not to disclose the information that the agreement gave the person access to.

Saltzer & Kaashoek Ch. 11, p. 81	 June 24, 2009 12:29 am

11–82 CHAPTER 11 Information Security

Compartment

Object

Principal

Guard program

Untrusted

FIGURE 11.7

Confining a program within a compartment.

Non-discretionary controls may need to be imposed in addition to or instead of dis
cretionary controls. For example, the department manager may be prepared to allow the
employees to adjust their access control lists any way they wish, within the constraint that
no one outside the compartment is ever given access. In that case, both non-discretionary
and discretionary controls apply.

The reason for interest in non-discretionary controls is not so much the threat of
malicious insubordination as the need to safely use complex and sophisticated programs
created by programmers who are not under the authority’s control. A user may obtain
some code from a third party (e.g., a Web browser extension, a software upgrade, a new
application) and if the supplied program is to be useful, it must be given access to the
data it is to manipulate or interpret (see Figure 11.7). But unless the downloaded pro
gram has been completely audited, there is no way to be sure that it does not misuse the
data (for example, by making an illicit copy and sending it somewhere) or expose the data
either accidentally or intentionally. One way to prevent this kind of security violation
would be to forbid the use of untrusted third-party programs, but for most organizations
the requirement that all programs be locally written (or even thoroughly audited) would
be an unbearable economic burden. The alternative is confinement of the untrusted pro
gram. That is, the untrusted program should run on behalf of some principal in a
compartment containing the necessary data, but should be constrained so that it cannot
authorize sharing of anything found or created in that compartment with other
compartments.

Complete elimination of discretionary controls is easy to accomplish. For example,
one could arrange that the initial value for the access control list of all newly created
objects not give “ACL-modification” permission to the creating principal (under which
the downloaded program is running). Then the downloaded program could not release
information by copying it into an object that it creates and then adjusting the access con
trol list on that object. If, in addition, all previously existing objects in the compartment
of the downloaded program do not permit that principal to modify the access control
list, the downloaded program would have no discretionary control at all.

Saltzer & Kaashoek Ch. 11, p. 82 June 24, 2009 12:29 am

11.6 Authorization: Controlled Sharing 11–83

An interesting requirement for a non-discretionary control system that implements
isolated compartments arises whenever a principal is authorized to have access to two or
more compartments simultaneously, and some data objects may be labeled as being
simultaneously in two or more compartments (e.g., pricing data for a new product may
be labeled as requiring access to the “pricing policy” compartment as well as the “new
product line” compartment). In such a case it would seem reasonable that, before per
mitting reading of data from an object, the control mechanics should require that the set
of compartments of the object being referenced be a subset of the compartments to
which the accessor is authorized.

A more stringent interpretation, however, is required for permission to write, if
downloaded programs are to be confined. Confinement requires that the program be
constrained to write only into objects that have a compartment set that is a subset of that
of the program itself. If such a restriction were not enforced, a malicious downloaded
program could, upon reading data labeled for both the “pricing policy” and the “new
product line” compartments, make a copy of part of it in an object labeled only “pricing
policy,” thereby compromising the “new product line’’ compartment boundary. A sim
ilar set of restrictions on writing can be expressed for sensitivity levels. A set of such
restrictions is known as rules for information flow control.

11.6.5.1 Information Flow Control Example
To make information flow control more concrete, consider a company that has informa
tion divided in two compartment:

1. financial (e.g., product pricing)

2. product (e.g., product designs)

Each file in the computer system is labeled to belong to one of these compartments.
Every principal is given a clearance for one or both compartments. For example, the
company’s policy might be as follows: the company’s accounts have clearance for reading
and writing files in the financial compartment, the company’s engineers have clearance
for reading and writing files in the product compartment, and the company’s product
managers have clearance for reading and writing files in both compartments.

The principals of the system interact with the files through programs, which are
untrusted. We want ensure that information flows only to the company’s policy. To
achieve this goal, every thread records the labels of the compartments for which the prin
cipal is cleared; this clearance is stored in Tlabelsseen. Furthermore, the system remembers
the maximum compartment label of data the thread has seen, Tmaxlabels. Now the infor
mation flow control rules can be implemented as follows. The read rule is:

• Before reading an object with labels Olabels, check that Olabels ⊆ Tmaxlabels.
• If so, set Tlabelsseen ← Tlabelsseen ∪ Clabels, and allow access.

This rule can be summarized by “no read up.” The thread is not allowed to have
access to information in compartments for which it has no clearance.

Saltzer & Kaashoek Ch. 11, p. 83 June 24, 2009 12:29 am

11–84 CHAPTER 11 Information Security

The corresponding write rule is:

• Allow a write to an object with clearance Olabels only if Tlabelsseen ⊆ Olabels

This rule could be called “no write down.” Every object written by a thread that read
data in compartments L must be labeled with L’s labels. This rule ensures that if a thread
T has read information in a compartment other than the ones listed in L than that infor
mation doesn’t leak into the object O.

These information rules can be used to implement a wide range of policies. For exam
ple, the company can create more compartments, more principals, or modify the list of
compartments a principal has clearance for. These changes in policy don’t require
changes in the information flow rules. This design is another example of the principle
separate mechanism from policy.

Sometimes there is a need to move an object from one compartment to another
because, for example, the information in the object isn’t confidential anymore. Typically
downgrading of information (declassification in the security jargon) must be done by a
person who inspects the information in the object, since a program cannot exercise
judgement. Only a human can establish that information to be declassified is not
sensitive.

This example sketches a set of simple information flow control rules. In real system
systems more complex information flow rules are needed, but they have a similar flavor.
The United States National Security Agency has a strong interest in computer systems
with information flow control, as do companies that have sensitive data to protect. The
Department of Defense has a specification for what these computer systems should pro
vide (this specification is part of a publication known as the Orange Book*, which
classifies systems according to their security guarantees). It is possible that information
flow control will find other usages than in high-security systems, as the problems with
untrusted programs become more prevalent in the Internet, and sophisticated confine
ment is required.

11.6.5.2 Covert Channels
Complete confinement of a program in a system with shared resources is difficult, or per
haps impossible, to accomplish, since the program may be able to signal to other users
by strategies more subtle than writing into shared objects. Computer systems with shared
resources always contain covert channels, which are hidden communication channels
through which information can flow unchecked. For example, two threads might con
spire to send bits by the logical equivalent of “banging on the wall.’’ See Section
11.11.10.1 for a concrete example and see problem set 43 for an example that literally
involves banging. In practice, just finding covert channels is difficult. Blocking covert
channels is an even harder problem: there are no generic solutions.

* U.S.A. Department of Defense, Department of Defense trusted computer system evaluation criteria,
Department of Defense standard 5200, December 1985.

Saltzer & Kaashoek Ch. 11, p. 84 June 24, 2009 12:29 am

11.7 Advanced Topic: Reasoning about Authentication 11–85

11.7 Advanced Topic: Reasoning about Authentication
The security model has three key steps that are executed by the guard on each request:
authenticating the user, verifying the integrity of the request, and determining if the user
is authorized. Authenticating the user is typically the most difficult of the three steps
because the guard can establish only that the message came from the same origin as some
previous message. To determine the principal that is associated with a message, the guard
must establish that it is part of a chain of messages that often originated in a message that
was communicated by physical rendezvous. That physical rendezvous securely binds the
identity of a real-world person with a principal.

The authentication step is further complicated because the messages in the chain
might even come from different principals, as we have seen in some of the security pro
tocols in Section 11.5. If a message in the chain comes from a different principal and
makes a statement about another principal, we can view the message as one principal
speaking for another principal. To establish that the chain of messages originated from a
particular real-world user, the guard must follow a chain of principals.

Consider a simple security protocol, in which a certificate authority signs certificates,
associating authentication keys with names (e.g., “key Kpub belongs to the user named
X”). If a service receives this certificate together with a message M for which
VERIFY (M, Kpub) returns ACCEPT, then the question is if the guard should believe this mes
sage originated with “X”. The answer is no until the guard can establish the following
facts:

1. 	The guard knows that a message originated from a principal who knows a private
authentication key Kpriv because the message verified with Kpub.

2. 	The certificate is a message from the certification authority telling the guard that
the authentication key Kpub is associated with user “X.” (The guard can tell that
the certificate came from the certificate authority because the certificate was signed
with the private authentication key of the authority and the guard has obtained the
public authentication key of the authority through some other chain of messages
that originated in physical rendezvous.)

3. 	The certification authority speaks for user “X”. The guard may believe this
assumption, if the guard can establish two facts:

• 	User “X” says the certificate authority speaks for “X”. That is, user “X”
delegated authority to the certificate authority to speak on behalf of “X”. If
the guard bel ficate authority carefully minted a key for “X” that speaks for
only “X” and verified the identity of “X”, then the guard may consider this
belief a fact.

• 	 The certificate authority says Kpub speaks for user “X”. If the guard believes
that the certificate authority carefully minted a key for “X” that speaks for

Saltzer & Kaashoek Ch. 11, p. 85	 June 24, 2009 12:29 am

11–86 CHAPTER 11 Information Security

only “X” and verified the identity of “X”, then the guard may consider this
belief a fact.

With these facts, the guard can deduce that the origin of the first message is user “X”
as follows:

1. 	If user “X” says that the certificate authority speaks on behalf of “X”, then the
guard can conclude that the certificate authority speaks for “X” because “X” said it.

2. 	If we combine the first conclusion with the statement that the certificate authority
says that “X” says that Kpub speaks for X, then the guard can conclude that “X” says
that Kpub speaks for “X”.

3. 	If “X” says that Kpub speaks for X, then the guard can conclude that Kpub speaks
for “X” because “X” said it.

4. 	Because the first message verified with Kpub, the guard can conclude that the
message must have originated with user “X”.

In this section, we will formalize this type of reasoning using a simple form of what
is called authentication logic, which defines more precisely what “speaks for” means.
Using that logic we can establish the assumptions under which a guard is willing to
believe that a message came from a particular person. Once the assumptions are identi
fied, we can decide if the assumptions are acceptable, and, if the assumptions are
acceptable, the guard can accept the authentication as valid and go on to determine if the
principal is authorized.

11.7.1 Authentication Logic

Burrows-Abadi-Needham (BAN) authentication logic is a particular logic to reason
about authentication systems. We give an informal and simplified description of the
logic and its usage. If you want to use it to reason about a complete protocol, read
Authentication in Distributed Systems: Theory and Practice [Suggestions for Further Read
ing 11.3.1].

Consider the following example. Alice types at her workstation “Send me the quiz”
(see Figure 11.8). Her workstation A sends a message over the wire from network inter
face 14 to network interface 5, which is attached to the file service machine F, which runs
the file service. The file service stores the object “quiz.”

What the file service needs to know is that “Alice says send quiz”. This phrase is a
statement in the BAN authentication logic. This statement “A says B” means that agent
A originated the request B. Informally, “A says B” means we have determined somehow
that A actually said B. If we were within earshot, “A says B” is an axiom (we saw A say
it!); but if we only know that “A says B” indirectly (“through hearsay”), we need to use
additional reasoning, and perhaps make some other assumptions before we believe it.

Unfortunately, the file system knows only that network interface F.5 (that is, network
interface 5 on machine F) said Alice wants the quiz sent to her. That is, the file system

Saltzer & Kaashoek Ch. 11, p. 86	 June 24, 2009 12:29 am

11.7 Advanced Topic: Reasoning about Authentication 11–87

Quiz

File service

Workstation

Interface 5Interface 14

Alice To: service
From: Alice

Send me the quiz

FIGURE 11.8

Authentication example.

knows “network interface F.5 says (Alice says send the quiz)”. So “Alice says send the
quiz” is only hearsay at the moment. The question is, can we trust network interface F.5
to tell the truth about what Alice did or did not say? If we do trust F.5 to speak for Alice,
we write “network interface F.5 speaks for Alice” in BAN authentication logic. In this
example, then, if we believe that “network interface F.5 speaks for Alice, we can deduce
that “Alice says send the quiz.”

To make reasoning with this logic work, we need three rules:

• Rule 1: Delegating authority:

If A says (B speaks for A)
then B speaks for A

This rule allows Alice to delegate authority to Bob, which allows Bob to speak for Alice.

• Rule 2: Use of delegated authority.

If A speaks for B

and A says (B says X)

then B says X

This rule says that if Bob delegated authority to Alice, and Alice says that Bob said some
thing then we can believe that Bob actually said it.

• Rule 3: Chaining of delegation.

If A speaks for B

and B speaks for C

then A speaks for C

This rule says that delegation of authority is transitive: if Bob has delegated authority to
Alice and Charles has delegated authority to Bob, then Charles also delegated authority
to Alice.

Saltzer & Kaashoek Ch. 11, p. 87 June 24, 2009 12:29 am

11–88 CHAPTER 11 Information Security

To capture real-world situations better, the full-bore BAN logic uses more refined
rules then these. However, as we will see in the rest of this chapter, even these three sim
ple rules are useful enough to help flush out fuzzy thinking.

11.7.1.1 Hard-wired Approach
How can the file service decide that “network interface F.5 speaks for Alice”? The first
approach would be to hard-wire our installation. If we hard-wire Alice to her worksta
tion, her workstation to network interface A.14, and network interface A.14 through the
wire to network interface F.5, then we have:

• 	 network interface F.5 speaks for the wire: we must assume no one rewired it.
• 	 the wire speaks for network interface A.14: we must assume no one tampered

with the channel.
• 	network interface A.14 speaks for workstation A: we must assume the

workstation was wired correctly.
• 	 workstation A speaks for Alice: we assume the operating system on Alice’s

workstation can be trusted.

In short, we assume that the network interface, the wiring, and Alice’s workstation
are part of the trusted computing base. With this assumption we can apply the chaining
of delegation rule repeatedly to obtain “network interface F.5 speaks for Alice”. Then,
we can apply the use of delegated authority rule and obtain “Alice says send the quiz”.
Authentication of message origin is now complete, and the file system can look for Alice’s
token on its access control list.

The logic forced us to state our assumptions explicitly. Having made the list of
assumptions, we can inspect them and see if we believe each is reasonable. We might even
hire an outside auditor to offer an independent opinion.

11.7.1.2 Internet Approach
Now, suppose we instead connect the workstation’s interface 14 to the file service’s inter
face 5 using the Internet. Then, following the previous pattern, we get:

• 	 network interface F.5 speaks for the Internet: we must assume no one rewired it.
• 	 the Internet speaks for network interface A.14: we must assume the Internet is

trusted!

The latter assumption is clearly problematic; we are dead in the water.
What can we do? Suppose the message is sent with some authentication tag—Alice

actually sends the message with a MAC (reminder: {M}k denotes a plaintext message
signed with a key k):

Alice ⇒ file service: {From: Alice; To: file service; “send the quiz”}T

Then, we have:

• 	 key T says (Alice says send the quiz).

Saltzer & Kaashoek Ch. 11, p. 88	 June 24, 2009 12:29 am

11.7 Advanced Topic: Reasoning about Authentication 11–89

If we know that Alice was the only person in the world who knows the key T, then we
would be able to say:

• key T speaks for Alice.

With the use of delegated authority rule we could conclude “Alice says send the quiz”.
But is Alice really the only person in the world who knows key T? We are using a shared-
secret key system, so the file service must also know the key, and somehow the key must
have been securely exchanged between Alice and the file service. So we must add to our
list of assumptions:

• the file service is not trying to trick itself;
• the exchange of the shared-secret key was secure;
• Neither Alice nor the file service have revealed the key.

With these assumptions we really can believe that “key T speaks for Alice”, and we
are home free. This reasoning is not a proof, but it is a method that helps us to discover
and state our assumptions clearly.

The logic as presented doesn’t deal with freshness. In fact, in the example, we can
conclude only that “Alice said send the quiz”, but not that Alice said it recently. Someone
else might be replaying the message. Extensions to the basic logic can deal with freshness
by introducing additional rules for freshness that relate says and said.

11.7.2 Authentication in Distributed Systems

All of the authentication examples we have discussed so far have involved one service.
Using the techniques from Section 11.6, it is easy to see how we can build a single-service
authentication and authorization system. A user sets up a confidential and authenticated
communication channel to a particular service. The user authenticates itself over the
secure channel and receives from the service a token to be used for access control. The
user sends requests over the secure channel. The service then makes its access control
decisions based on the token that accompanies the request.

Authentication in the World-Wide Web is an example of this approach. The browser
sets up a secure channel using the SSL/TLS protocol described in Section 11.10. Then,
the browser asks the user for a password and sends this password over the secure channel
to the service. If the service identifies the user successfully with the received password,
the service returns a token (a cookie in Web terminology), which the browser stores. The
browser sends subsequent Web requests over the secure channel and includes the cookie
with each request so that the user doesn’t have to retype the password for each request.
The service authenticates the principal and authorizes the request based on the cookie.
(In practice, many Web applications don’t set up a secure channel, but just communicate
the password and cookie without any protection. These applications are vulnerable to
most of the attacks discussed in previous sections.)

The disadvantage of this approach to authentication is that services cannot share
information about clients. The user has to log in to each service separately and each ser-

Saltzer & Kaashoek Ch. 11, p. 89 June 24, 2009 12:29 am

11–90 CHAPTER 11 Information Security

vice has to implement its own authentication scheme. If the user uses only a few services,
these shortcomings are not a serious inconvenience. However, in a realm (say a large
company or a university) where there are many services and where information needs to
be shared between services, a better plan is needed.

In such an environment we would like to have the following properties:

1. 	the user logs in once;

2. 	the tokens the user obtains after login in should be usable by all services for
authentication and to make authorization decisions;

3. 	users are named in a uniform way so that their names can be put on and removed
from access control lists;

4. 	users and services don’t have to trust the network.

These goals are sometimes summarized as single login or single sign-on. Few system
designs or implementations meet these requirements. One system that comes close is
Kerberos (see Sidebar 11.6). Another system that is gaining momentum for single sign-
on to Web sites is openID; its goal is to allow users to have one ID for different Internet
stores. The openID protocols are driven by a public benefit organization called the
OpenID Foundation. Many major companies have joined the openID Foundation and
providing support in their services for openID.

11.7.3 Authentication across Administrative Realms

Extending authentication across realms that are administrated by independent authori
ties is a challenge. Consider a student who is running a service on a personal computer
in his dorm room. The personal computer is not under the administrative authority of
the university; yet the student might want to obtain access to his service from a computer
in a laboratory, which is administered by central campus authority. Furthermore, the
student might want to provide access to his service to family and friends who are in yet
other administrative realms. It is unlikely that the campus administration will delegate
authority to the personal computer, and set up secure channels from the campus authen
tication service to each student’s authentication service.

Sharing information with many users across many different administrative realms
raises a number of questions:

1. 	How can we authenticate services securely? The Domain Name System (DNS)
doesn’t provide authenticated bindings of name to IP addresses (see Section 4.4)
and so we cannot use DNS names to authenticate services.

2. 	How can we name users securely? We could use e-mail addresses, such as
bob@Scholarly.edu, to identify principals but e-mail addresses can be spoofed.

3. 	How do we manage many users? If Pedantic University is willing to share course
software with all students at The Institute of Scholar Studies, Pedantic University

Saltzer & Kaashoek Ch. 11, p. 90	 June 24, 2009 12:29 am

http:bob@Scholarly.edu

11.7 Advanced Topic: Reasoning about Authentication 11–91

shouldn’t have to list individually every student of The Institute of Scholar Studies
on the access control list for the files. Clearly, protection groups are needed. But,
how does a student at The Institute of Scholar Studies prove to Pedantic
University’s service that the student is part of the group students@Scholarly.edu?

These three problems are naming problems: how do we name a service, a user, a
group, and a member of a protection group securely? A promising approach is to split the
problem into two parts: (1) name all principals (e.g., services, users, and groups) by public
keys and (2) securely distribute symbolic names for the public keys separately. We discuss
this approach in more detail.

By naming principals by a public key we eliminate the distinction of realms. For
example, a user Alice at Pedantic University might be named by a public key KApub and
a user Bob at The Institute of Scholar Studies is named by a public KBpub; from the pub
lic key we cannot tell whether the Alice is at Pedantic University or The Institute of
Scholar Studies. From the public key alone we cannot tell if the public key is Alice’s, but
we will solve the binding from public key to symbolic name separately in the next Sec
tions 11.7.4 through 11.7.6.

If the Alice wants to authorize Bob to have access to her files, Alice adds KBpub to her
access control list. If Bob wants to use Alice’s files, Bob sends a request to Alice’s service
including his public key KBpub. Alice checks if KBpub appears on her access control list. If
not, she denies the request. Otherwise, Alice’s service challenges Bob to prove that he has
the private key corresponding to KBpub. If Bob can prove that he has KBpriv (e.g., for
example by signing a challenge that Alice’s service verifies with Bob’s public key KBpub),
then Alice’s service allows access.

When Alice approves the request, she doesn’t know for sure if the request came from
the principal named “Bob”; she just knows the request came from a principal holding
the private key KBpriv. The symbolic name “Bob” doesn’t play a role in the mediation
decision. Instead, the crucial step was the authorization decision when Alice added KBpub
to her access control; as part of that authorization decision Alice must assure herself that
KBpub speaks for Bob before adding KBpub to her access control list. That assurance relies
on securely distributing bindings from name to public key, which we separated out as an
independent problem and will discuss in the next Sections 11.7.4 through 11.7.6.

We can name protection groups also by a public key. Suppose that Alice knew for sure
that KISSstudentspub is a public key representing students of The Institute of Scholarly
Studies. If Alice wanted to grant all students at The Institute of Scholarly Studies access
to her files, she could add KISSstudentspub to her access control list. Then, if Charles, a stu
dent at The Institute of Scholar Studies, wanted to have access to one of Alice’s files, he
would have to present a proof that he is a member of that group, for example, by provid
ing a statement to Alice signed by KISSstudentspriv to Alice saying:

{KCharlespub is a member of the group KISSstudentspub}
KISSstudentspriv

,

which in the BAN logic translates to:

KCharlespub speaks for KISSstudentspub,

Saltzer & Kaashoek Ch. 11, p. 91 June 24, 2009 12:29 am

11–92 CHAPTER 11 Information Security

that is, Alice delegated authority to the member Charles to speak on behalf of the group
of students at The Institute of Scholarly Studies.

Alice’s service can verify this statement using KISSstudentspub, which is on Alice’s access
control list. After Alice’s service successfully verifies the statement, then the service can
challenge Charles to prove that he is the holder of the private key KCharlespriv. Once
Charles can prove he is the holder of that private key, then Alice’s service can grant access
to Charles.

In this setup, Alice must trust the holder of KISSstudentspriv to be a responsible person
who carefully verifies that Charles is a student at The Institute of Scholarly Studies. If
she trusts the holder of that key to do so, then Alice doesn’t have to maintain her own
list of who is a student at The Institute of Scholar Studies; in fact, she doesn’t need to
know at all which particular principals are students at The Institute of Scholarly Studies.

If services are also named by public keys, then Bob and Charles can easily authenticate
Alice’s service. When Bob wants to connect to Alice’s service, he specifies the public key
of the service. If the service can prove that it possesses the corresponding private key, then
Bob can have confidence that he is talking to the right service.

By naming all principals with public keys we can construct distributed authentication
systems. Unfortunately, public keys are long, unintelligible bit strings, which are awk
ward and unfriendly for users to remember or type. When Alice adds KBobpub and
KISSstudentspub to her access control list, she shouldn’t be required to type in a 1,024-bit
number. Similarly when Bob and Charles refer to Alice’s service, they shouldn’t be
required to know the bit representation of the public key of Alice’s service. What is nec
essary is a way of naming public keys with symbolic names and authenticating the
binding between name and key, which we will discuss next.

11.7.4 Authenticating Public Keys

How do we authenticate that KBpub is Bob’s public key? As we have seen before, that
authentication can be based on a key-distribution protocol, which start with a rendez
vous step. For example, Bob and Alice meet face-to-face and Alice hands Bob a signed
piece of paper with her public key and name. This piece of paper constitutes a self-signed
certificate. Bob can have reasonable confidence in this certificate because Bob can verify
that the certificate is valid and is Alice’s. (Bob can ask Alice to sign again and compare it
with the signature on the certificate and ask Alice for her driver license to prove her
identity.)

If Bob receives a self-signed certificate over an untrusted network, however, we are
out of luck. The certificate says “Hi, I am Alice and here is my public key” and it is signed
with Alice’s digital signature, but Bob does not know Alice’s public key yet. In this case,
anybody could impersonate Alice to Bob because Bob cannot verify whether or not Alice
produced this certificate. An adversary can generate a public/private key pair, create a cer
tificate for Alice listing the public key as Alice’s public key, and sign it with the private
key, and send this self-signed certificate to Bob.

Saltzer & Kaashoek Ch. 11, p. 92 June 24, 2009 12:29 am

11.7 Advanced Topic: Reasoning about Authentication 11–93

Bob needs a way to find out securely what Alice’s public key is. Most systems rely on
a separate infrastructure for naming and distributing public keys securely. Such an infra
structure is called a public key infrastructure, PKI for short. There is a wide range of
designs for such infrastructures, but their basic functions can be described well with the
authentication logic. We start with a simple example using physical rendezvous and then
later use certificate authorities to introduce principals to each other who haven’t met
through physical rendezvous.

Consider the following example where Alice receives a message from Bob, asking
Alice to send a private file, and Alice wants to decide whether or not to send it. The first
step in this decision is for Alice to establish if the message really came from Bob.

Suppose that Bob previously handed Alice a piece of paper on which Bob has written
her public key, KpubBob. We can describe Alice’s take on this event in authentication
logic as

Bob says (KpubBob speaks for Bob) (belief #1)

and by applying the delegation of authority rule, Alice can immediately conclude that
she is safe in believing

KpubBob speaks for Bob (belief #2)

assuming that the information on the piece of paper is accurate. Alice realizes that she
should should start making a list of assumptions for review later. (She ignores freshness
for now because our stripped-down authentication logic has no said operation for cap
turing that.)

Next, Bob prepares a message, M1:

Bob says M1

signs it with his private key:

{M1}KprivBob

which, in authentication logic, can be described as

KprivBob says (Bob says M1)

and sends it to Alice. Since the message arrived via the Internet, Alice now wonders if she
should believe

Bob says M1 (?)

Fortunately, M1 is signed, so Alice doesn’t need to invoke any beliefs about the Internet.
But the only beliefs she has established so far are (#1) and (#2), and those are not suffi
cient to draw any conclusions. So the first thing Alice does is check the signature:

result ← VERIFY ({M1}KprivBob, KpubBob)

If result is ACCEPT then one might think that Alice is entitled to believe:

KprivBob says (Bob says M1) (belief #3?)

Saltzer & Kaashoek Ch. 11, p. 93 June 24, 2009 12:29 am

11–94 CHAPTER 11 Information Security

but that belief actually requires a leap of faith: that the cryptographic system is secure.
Alice decides that it probably is, adds that assumption to her list, and removes the ques
tion mark on belief #3. But she still hasn’t collected enough beliefs to answer the
question. In order to apply the chaining and use of authority rules, Alice needs to believe
that

(KprivBob speaks for KpubBob) (belief #4?)

which sounds plausible, but for her to accept that belief requires another leap of faith:
that Bob is the only person who knows KprivBob. Alice decides that Bob is probably care
ful enough to be trusted to keep his private key private, so she adds that assumption to
her list and removes the question mark from belief #4.

Now, Alice can apply chaining of delegation rule to beliefs #4 and #2 to conclude

KprivBob speaks for Bob (belief #5)

and she can now use the use of delegated authority rule to beliefs #5 and #3 to conclude
that

Bob says M1 (belief #6)

Alice decides to accepts the message as a genuine utterance of Bob. The assumptions that
emerged during this reasoning were:

• KpubBob is a true copy of Bob’s public key.
• The cryptographic system used for signing is computationally secure.
• Bob has kept KprivBob secret.

11.7.5 Authenticating Certificates

One of the prime usages of a public key infrastructure is to introduce principals that
haven’t met through a physical rendezvous. To do so a public key infrastructure provides
certificates and one or more certificate authorities.

Continuing our example, suppose that Charles, whom Alice does not know, sends
Alice the message

{M2}KprivCharles

This situation resembles the previous one, except that several things are missing: Alice
does not know KpubCharles, so she can’t verify the signature, and in addition, Alice does
not know who Charles is. Even if Alice finds a scrap of paper that has written on it
Charles’s name and what purports to be Charles’s public key, KpubCharles, and

result ←VERIFY (M2, SIGN (M2, KprivCharles), KpubCharles)

is ACCEPT, all she believes (again assuming that the cryptographic system is secure) is that

KprivCharles says (Charles says M2)

Saltzer & Kaashoek Ch. 11, p. 94 June 24, 2009 12:29 am

11.7 Advanced Topic: Reasoning about Authentication 11–95

Without something corresponding to the previous beliefs #2 and #4, Alice still does not
know what to make of this message. Specifically, Alice doesn’t yet know whether or not
to believe

KprivCharles speaks for Charles (?)

Knowing that this might be a problem, Charles went to a well-known certificate
authority, TrustUs.com, purchased the digital certificate:

{“Charles’s public key is KpubCharles”}KprivTrustUs

and posted this certificate on his Web site. Alice discovers the certificate and wonders if
it is any more useful than the scrap of paper she previously found. She knows that where
she found the certificate has little bearing on its trustworthiness; a copy of the same cer
tificate found on Lucifer’s Web site would be equally trustworthy (or worthless, as the
case may be).

Expressing this certificate in authentication logic requires two steps. The first thing
we note is that the certificate is just another signed message, M3, so Alice can interpret
it in the same way that she interpreted the message from Bob:

KprivTrustUs says M3

Following the same reasoning that she used for the message from Bob, if Alice believes
that she has a true copy of KpubTrustUs she can conclude that

TrustUs says M3

subject to the assumptions (exactly parallel to the assumptions she used for the message
from Bob)

• KpubTrustUs is a true copy of the TrustUs.com public key.
• The cryptographic system used for signing is computationally secure.
• TrustUs.com has kept KprivTrustUs secret.

Alice decides that she is willing to accept those assumptions, so she turns her attention
to M3, which was the statement “Charles’s public key is KpubCharles”. Since TrustUs.com
is taking Charles’s word on this, that statement can be expressed in authentication logic
as

Charles says (KpubCharles speaks for Charles)

Combining, we have:

TrustUs says (Charles says (KpubCharles speaks for Charles))

To make progress, Alice needs to a further leap of faith. If Alice knew that

TrustUs speaks for Charles (?)

then she could apply the delegated authority rule to conclude that

Charles says (KpubCharles speaks for Charles)

Saltzer & Kaashoek Ch. 11, p. 95 June 24, 2009 12:29 am

http:TrustUs.com

11–96 CHAPTER 11 Information Security

and she could then follow an analysis just like the one she used for the earlier message
from Bob. Since Alice doesn’t know Charles, she has no way of knowing the truth of the
questioned belief (TrustUs speaks for Charles), so she ponders what it really means:

1. 	TrustUs.com has been authorized by Charles to create certificates for her. Alice
might think that finding the certificate on Charles’s Web site gives her some
assurance on this point, but Alice has no way to verify that Charles’s Web site is
secure, so she has to depend on TrustUs.com being a reputable outfit.

2. 	TrustUs.com was careful in checking the credentials—perhaps, a driver’s license—
that Charles presented for identification. If TrustUs.com was not careful, it might,
without realizing it, be speaking for Lucifer rather than Charles. (Unfortunately,
certificate authorities have been known to make exactly that mistake.) Of course,
TrustUs.com is assuming that the credentials Charles presented were legitimate; it
is possible that Charles has stolen someone else’s identity. As usual, authentication
of origin is never absolute; at best it can provide no more than a secure tie to some
previous authentication of origin.

Alice decides to review the complete list of the assumptions she needs to make in order
to accept Charles’s original message M2 as genuine:

• 	 KpubTrustUs is a true copy of the TrustUs.com public key.
• 	 The cryptographic system used for signing is computationally secure.
• 	 TrustUs.com has kept KprivTrustUs secret.
• 	 TrustUs.com has been authorized by Charles.
• 	 TrustUs.com carefully checked Charles’s credentials.
• 	 TrustUs.com has signed the right public key (that is KpubCharles).
• 	 Charles has kept KprivCharles secret.

and she notices that in addition to relying heavily on the trustworthiness of Trus
tUs.com, she doesn’t know Charles, so the last assumption may be a weakness. For this
reason, she would be well-advised to accept message M2 with a certain amount of cau
tion. In addition, Alice should keep in mind that since Charles’s public key was not
obtained by a physical rendezvous, she knows only that the message came from someone
named “Charles”; she as yet has no way to connect that name with a real person.

As in the previous examples, the stripped-down authentication logic we have been
using for illustration has no provision for checking freshness, so it hasn’t alerted Alice
that she is also assuming that the two public keys are fresh and that the message itself is
recent.

The above example is a distributed authorization system that is ticket-oriented.
Trust.com has generated a ticket (the certificate) that Alice uses to authenticate Charles’s
request. Given this observation, this immediately raises the question of how Charles
revokes the certificate that he bought from TrustUs.com. If Charles, for example, acci
dently discloses his private key, the certificate from TrustUS.com becomes worthless and
he should revoke it so that Alice cannot be tricked into believing that M2 came from

Saltzer & Kaashoek Ch. 11, p. 96	 June 24, 2009 12:29 am

http:tUs.com
http:TrustUs.com

11.7 Advanced Topic: Reasoning about Authentication 11–97

Charles. One way to address this problem is to make a certificate valid for only a limited
length of time. Another approach is for TrustUs.com to maintain a list of revoked cer
tificates and for Alice to first check with TrustUS.com before accepting an certificate as
valid.

Neither solution is quite satisfactory. The first solution has the disadvantage that if
Charles loses his private key, the certificate will remain valid until it expires. The second
solution has the disadvantage that TrustUs.com has to be available at the instant that
Alice tries to check the validity of the certificate.

11.7.6 Certificate Chains

The public key infrastructure developed so far has one certificate authority, Trus
tUS.com. How do we certify the public key of TrustUs.com? There might be many
certificate authorities, some of which Alice doesn’t know about. However, Alice might
possess a certificate for another certificate authority that certifies TrustUs.com, creating
a chain of certification. Public key infrastructures organize such chains in two primary
ways; we discuss them in turn.

11.7.6.1 Hierarchy of Central Certificate Authorities
In the central-authority approach, key certificate authorities record public keys and are
managed by central authorities. For example, in the Word Wide Web, certificates
authenticating Web sites are usually signed by one of several well-known root certificate
authorities. Commercial Web sites, such as amazon.com, for instance, present a certifi
cate signed by Versign to a client when it connects. All Web browsers embed the public
key of the root certificates in their programs. When the browser receives a certificate from
amazon.com, it uses the embedded public key for Verisign to verify the certificate.

Some Web sites, for example a company’s internal Web site, generate a self-signed
certificate and send that to a client when it connects. To be able to verify a self-signed
certificate, the client must have obtained the key of the Web site securely in advance.

The Web approach to certifying keys has a shallow hierarchy. In DNSSEC*, a secure
version of DNS, CAs can be arranged in a deeper hierarchy. If Alice types in the name
“athena.Scholarly.edu”, her resolver will contact one of the root servers and obtain an
address and certificate for “edu”. In authentication logic, the meaning of this certificate
is “Kprivroot says that Kpubedu speaks for edu”. To be able to verify this certificate she must
have obtained the public key of the root servers in some earlier rendezvous step. If the
certificate for “edu” verifies, she contacts the server for the “edu” domain, and asks for
the server’s address and certificate for “Scholarly”, and so on.

One problem with the hierarchical approach is that one must trust a central authority,
such as the DNS root service. The central authority may ask an unreasonable price for
the service, enforce policies that you don’t like, or considered untrustworthy by some.

* D. Eastlake, Domain Name System Security Extensions, Internet Engineering Task Force Request
For Comments (RFC 2535), Mach 1999.

Saltzer & Kaashoek Ch. 11, p. 97 June 24, 2009 12:29 am

http:tUS.com
http:TrustUs.com
http:amazon.com
http:amazon.com

11–98 CHAPTER 11 Information Security

For example, in DNS and DNSSEC, there is a lot of politics around which institution
should run the root servers and the policies of that institution. Since the Internet and
DNS originated in the U.S.A., it is currently run by an U.S.A. organization. Unhappi
ness with this organization has led the Chinese to start their own root service.

Another problem with the hierarchical approach is that certificate authorities deter
mine to whom they delegate authority for a particular domain name. You might be
happy with the Institute of Schlarly Studies managing the “Scholarly” domain, but have
less trust in a rogue government managing the top-level domain for all DNS names in
that country.

Because of problems like these, it is difficult in practice to agree and manage a single
PKI that allows for strong authentication world wide. Currently, no global PKI exist.

11.7.6.2 Web of Trust
The web-of-trust approach avoids using a chain of central authorities. Instead, Bob can
decide himself whom he trusts. In this approach, Alice obtains certificates from her
friends Charles, Dawn, and Ella and posts these on her Web page: {Alice, KApub}KCpriv,
{Alice, KApub}KDpriv, {Alice, KApub}KEpriv. If Bob knows the public key of any one of
Charles, Dawn, or Ella, he can verify one of the certificates by verifying the certificate
that person signed. To the extent that he trusts that person to be careful in what he or
she signs, he has confidence that he now has Alice’s true public key.

On the other hand, if Bob doesn’t know Charles, Dawn, or Ella, he might know
someone (say Felipe) who knows one of them. Bob may learn that Felipe knows Ella
because he checks Ella’s Web site and finds a certificate signed by Felipe. If he trusts
Felipe, he can get a certificate from Felipe, certifying one of the public keys KCpub, KDpub,
or KEpub, which he can then use to certify Alice’s public key. Another possibility is that
Alice offers a few certificate chains in the hope that Bob trusts one of the of the signers
in one of the chains, and has the signer’s public key in his set of keys. Independent of
how Bob learned Alice’s public key, he can inspect the chain of trust by which he learned
and verified Alice’s public key and see whether he likes it or not. The important point
here is that Bob must trust every link in the chain. If any link untrustworthy, he will have
no guarantees.

The web of trust scheme relies on the observation that it usually takes only a few
acquaintance steps to connect anyone in the world to anyone else. For example, it has
been claimed that everyone is separated by no more than 6 steps from the President of
the United States. (There may be some hermits in Tibet that require more steps.) With
luck, there will be many chains connecting Bob with Alice, and one of them may consist
entirely of links that Bob trusts.

The central idea in the web-of-trust approach is that Bob can decide whom he trusts
instead of having to trust a central authority. PGP (Pretty Good Privacy) [Suggestions
for Further Reading 1.3.16] and a number of other systems use the web of trust
approach.

Saltzer & Kaashoek Ch. 11, p. 98 June 24, 2009 12:29 am

11.8 Cryptography as a Building Block (Advanced Topic) 11–99

11.8 Cryptography as a Building Block (Advanced Topic)
This section sketches how primitives such as ENCRYPT, DECRYPT, pseudorandom number
generators, SIGN, VERIFY, and cryptographic hashes can be implemented using crypto
graphic transformations (also called ciphers). Readers who wish to understand the
implementations in detail should consult books such as Applied Cryptography by Bruce
Schneier [Suggestions for Further Reading 1.2.4], or Handbook of Applied Cryptography
by Menezes, van Oorschot, and Vanstore [Suggestions for Further Reading 1.3.13].
Introduction to cryptography by Buchmann provides a concise description of the number
theory that underlies cryptography [Suggestions for Further Reading 1.3.14]. There are
many subtle issues in designing secure implementations of the primitives, which are
beyond the scope of this text.

11.8.1 Unbreakable Cipher for Confidentiality (One-Time Pad)

Making an unbreakable cipher for only confidentiality is easy, but there’s a catch. The
recipe is as follows. First, find a process that can generate a truly random unlimited string
of bits, which we call the key string, and transmit this key string through secure (i.e., pro
viding confidentiality and authentication) channels to both the sender and receiver
before they transmit any data through an insecure network.

Once the key string is securely in the hands of the sender, the sender converts the
plaintext into a bit string and computes bit-for-bit the exclusive OR (XOR) of the plaintext
and the key string. The sender can send the resulting ciphertext over an insecure network
to a receiver. Using the previously communicated key string, the receiver can recover the
plaintext by computing the XOR of the ciphertext and key string.

To be more precise, this transforming scheme is a stream cipher. In a stream cipher,
the conversion from plaintext to ciphertext is performed one bit or one byte at a time,
and the input can be of any length. In our example, a sequence of message (plaintext)
bits m1, m2,…, mn is transformed using an equal-length sequence of secret key bits k1,
k2, …, kn that is known to both the sender and the receiver. The i-th bit ci of the cipher
text is defined to be the XOR (modulo-2 sum) of mi and ki, for i = 1,…,n:

ci = mi ⊕ ki

Untransforming is just as simple, because:

mi = ci ⊕ = mi ⊕ ⊕ ki = miki ki

This scheme, under the name “one-time pad” was patented by Vernam in 1919 (U.S.
patent number 1,310,719). In his version of the scheme, the ‘‘pad’’ (that is, the one-time
key) was stored on paper tape.

The key string is generated by a random number generator, which produces as output
a “random” bit string. That is, from the bits generated so far, it is impossible to predict
the next bit. True random-number generators are difficult to construct; in fact, true

Saltzer & Kaashoek Ch. 11, p. 99 June 24, 2009 12:29 am

11–100 CHAPTER 11 Information Security

sources of random sequences come only from physical processes, not from deterministic
computer programs.

Assuming that the key string is truly random, a one-time pad cannot be broken by
the attacks discussed in Section 11.4, since the ciphertext does not give the adversary any
information about the plaintext (other than the length of the message). Each bit in the
ciphertext has an equal probability of being one or zero, assuming the key string consists
of truly random bits. Patterns in the plaintext won’t show up as patterns in the cipher
text. Knowing the value of any number of bits in the ciphertext doesn’t allow the
adversary to guess the bits of the plaintext or other bits in the ciphertext. To the adversary
the ciphertext is essentially just a random string of the same length as the message, no
matter what the message is.

If we flip a single message bit, the corresponding ciphertext bit flips. Similarly, if a
single ciphertext bit is flipped by a network error (or an adversary), the receiver will
untransform the ciphertext to obtain a message with a single bit error in the correspond
ing position. Thus, the one-time pad (both transforming and untransforming) has
limited change propagation: changing a single bit in the input causes only a single bit in
the output to change.

Unless additional measures are taken, an adversary can add, flip, or replace bits in the
stream without the recipient realizing it. The adversary may have no way to know exactly
how these changes will be interpreted at the receiving end, but the adversary can proba
bly create quite a bit of confusion. This cipher provides another example of the fact that
message confidentiality and integrity are separate goals.

The catch with a one-time pad is the key string. We must have a secure channel for
sending the key string and the key string must be at least as long as the message. One
approach to sending the key string is for the sender to generate a large key string in
advance. For example, the sender can generate 10 CDs full of random bits and truck
them over to the receiver by armored car. Although this scheme may have high band
width (6.4 Gigabytes per truckload), it probably has latency too large to be satisfactory.

The key string must be at least as long as the message. It is not hard to see that if the
sender re-uses the one-time pad, an adversary can determine quickly a bit (if not every
thing) about the plaintext by examining the XOR of the corresponding ciphertext (if the
bits are aligned properly, the pads cancel). The National Security Agency (NSA) once
caught the Russians in such a mistake* in Project VENONA†.

* R. L. Benson, The Venona Story, National Security Agency, Center for logic History, 2001.
http://www.nsa.gov/publications/publi00039.cfm

† D. P. Moynihan (chair), Secrecy: Report of the commision on protecting and reducing govern
ment secrecy, Senate document 105-2, 103rd congress, United States government printing
office,1997.

Saltzer & Kaashoek Ch. 11, p. 100 June 24, 2009 12:29 am

http://www.nsa.gov/publications/publi00039.cfm

11.8 Cryptography as a Building Block (Advanced Topic) 11–101

11.8.2 Pseudorandom Number Generators

One shortcut to avoid having to send a long key string over a secure channel is to use a
pseudorandom number generator. A pseudorandom number generator produces deter
ministically a random-appearing bit stream from a short bit string, called the seed.
Starting from the same seed, the pseudorandom generator will always produce the same
bit stream. Thus, if both the sender and the receiver have the secret short key, using the
key as a seed for the pseudorandom generator they can generate the same, long key string
from the short key and use the long key string for the transformation.

Unlike the one-time pad, this scheme can in principle be broken by someone who
knows enough about the pseudorandom generator. The design requirement on a pseu
dorandom number generator is that it is difficult for an opponent to predict the next bit
in the sequence, even with full knowledge of the generating algorithm and the sequence
so far. More precisely:

1. 	Given the seed and algorithm, it is easy to compute the next bit of the output of

the pseudorandom generator.

2. 	Given the algorithm and some output, it is difficult (or impossible) to predict the

next bit.

3. 	Given the algorithm and some output, it is difficult (or impossible) to compute

what the seed is.

Analogous to ciphers, the design is usually open: the algorithm for the pseudorandom
generator is open. Only the seed is secret, and it must be produced from a truly random
source.

11.8.2.1 Rc4: A Pseudorandom Generator and its Use
RC4 was designed by Ron Rivest for RSA Data Security, Inc. RC4 stands for Ron’s Code
number 4. RSA tried to keep this cipher secret, but someone published a description
anonymously on the Internet. (This incident illustrates how difficult it is to keep some
thing secret, even for a security company!) Because RSA never confirmed whether the
description is indeed RC4, people usually refer to the published version as ARC4, or
alleged RC4.

The core of the RC4 cipher is a pseudorandom generator, which is surprisingly sim
ple. It maintains a fixed array S of 256 entries, which contains a permutation of the

Saltzer & Kaashoek Ch. 11, p. 101	 June 24, 2009 12:29 am

11–102 CHAPTER 11 Information Security

numbers 0 through 255 (each array entry is 8 bits). It has two counters i and j, which are
used as follows to generate a pseudorandom byte k:

1 procedure RC4_GENERATE ()

2 i ← (i + 1) modulo 256

3 j ← (j + S[i]) modulo 256

4 SWAP (S[i], S[j])

5 t ← (S[i] + S[j]) modulo 256

6 k ← S[t]

7 return k

The initialization procedure takes as input a seed, typically a truly-random number,
which is used as follows:

1 procedure RC4_INIT (seed)

2 for i from 0 to 255 do

3 S[i] ← i

4 K[i] ← seed[i]

5 j ← 0

6 for i from 0 to 255 do

7 j ← (j + S[i] + K[i]) modulo 256

8 SWAP(S[i], S[j])

9 i ← j ← 0

The procedure RC4_INIT fills each entry of S with its index: S[0] ← 0, S[1] ←1, etc. (see
lines 2 through 4). It also allocates another 256-entry array (K) with each 8-bit entries. It
fills K with the seed, repeating the seed as necessary to fill the array. Thus, K[0] contains
the first 8 bits of the key string, K[1] the second 8 bits, etc. Then, it runs a loop (lines 6
through 8) that puts S in a pseudorandom state based on K (and thus the seed).

11.8.2.2 Confidentiality using RC4
Given the RC4 pseudorandom generator, ENCRYPT and DECRYPT can be implemented as in
the one-time pad, except instead of using a truly-random key string, we use the output
of the pseudorandom generator. To initialize, the sender and receiver invoke on their
respective computers RC4_INIT, supplying the shared-secret key for the stream as the seed.
Because the sender and receiver supply the same key to the initialization procedure,
RC4_GENERATE on the sender and receiver computer will produce identical streams of key
bytes, which ENCRYPT and DECRYPT use as a one-time pad.

In more detail, to send a byte b, the sender invokes RC4_GENERATE to generate a pseu
dorandom byte k and encrypts byte b by computing c = b ⊕ k. When the receiver receives
byte c, it invokes RC4_GENERATE on its computer to generate a pseudorandom byte k1 and
decrypts the byte c by computing b ⊕ k1. Because the sender and receiver initialized the
generator with the same seed, k and k1 are identical, and c ⊕ k1 gives b.

RC4 is simple enough that it can be coded from memory, yet it appears it is compu
tationally secure and a moderately strong stream cipher for confidentiality, though it has
been noticed that the first few bytes of its output leak information about the shared-

Saltzer & Kaashoek Ch. 11, p. 102 June 24, 2009 12:29 am

11.8 Cryptography as a Building Block (Advanced Topic) 11–103

secret key, so it is important to discard them. Like any stream cipher, it cannot be used
for authentication without additional mechanism. When using it to encrypt a long
stream, it doesn’t seem to have any small cycles and its output values vary highly (RC4
can be in about 256! × 2562 possible states). The key space contains 2256 values so it is
also difficult to attack RC4 by brute force. RC4 must be used with care to achieve a sys
tem’s overall security goal. For example, the Wired Equivalent Privacy scheme for WiFi
wireless networks (see page 11–50) uses the RC4 output stream without discarding the
beginning of the stream. As a result, using the leaked key information mentioned above
it is relatively easy to crack WEP wireless encryption*.

The story of flawed confidentiality in WiFi’s use of RC4 illustrates that it is difficult
to create a really good pseudorandom number generator. Here is another example of that
difficulty: during World War II, the Lorenz SZ 40 and SZ 42 cipher machines, used by
the German Army, were similarly based on a (mechanical) pseudorandom number gen
erator, but a British code-breaking team was able, by analyzing intercepted messages, to
reconstruct the internal structure of the generator, build a special-purpose computer to
search for the seed, and thereby decipher many of the intercepted messages of the Ger
man Army.†

11.8.3 Block Ciphers

Depending on the constraints on their inputs, ciphers are either stream ciphers or block
ciphers. In a block cipher, the cipher performs the transformation from plaintext to
ciphertext on fixed-size blocks. If the input is shorter than a block, ENCRYPT must pad the
input to make it a full block in length. If the input is longer than a block, ENCRYPT breaks
the input into several blocks, padding the last block is padded, if necessary, and then
transforms the individual blocks. Because a given plaintext block always produces the
same output with a block cipher, ENCRYPT must use a block cipher with care. We outline
one widely used block cipher and how it can be used to implement ENCRYPT and DECRYPT.

11.8.3.1 Advanced Encryption Standard (AES)
Advanced Encryption Standard (AES)‡ has 128-bit (or longer) keys and 128-bit plaintext
and ciphertext blocks. AES replaces Data Encryption Standard (DES)**††, which is now
regarded as too insecure for many applications, as distributed Internet computations or

* A. Stubblefield, J. Ioannidis, and A. Rubin, Using the Fluhrer, Mantin, and Shamir attack to
break WEP, Symposium on Network and Distributed System Security, 2002.

† F. H. Hinsley and Alan Stripp, Code Breakers: The Inside Story of Bletchley Park (Oxford University
Press, 1993) page 161.

‡ Advanced Encryption Standard, Federal Information Processing Standards Publications (FIPS
PUBS) 197, National Institute of Standards and Technology (NIST), Nov. 2001.

** Data Encryption Standard. U.S. Department of Standards, National Bureau of Standards, Fed
eral Information Processing Standard (FIPS) Publication #46, January, 1977 (#46–1 updated 1988;
#46–2 updated 1994).

Saltzer & Kaashoek Ch. 11, p. 103 June 24, 2009 12:29 am

11–104 CHAPTER 11 Information Security

dedicated special-purpose machines can use a brute-force exhaustive search to quickly
find a 56-bit DES key given corresponding plaintext and ciphertext [Suggestions for Fur
ther Reading 11.5.2].

AES takes a 128-bit input and produces a 128-bit output. If you don’t know the 128
bit key, it is hard to reconstruct the input given the output. The algorithm works on a
4×4 array of bytes, called state. At the beginning of the cipher the input array in is copied
to the state array as follows:

input state output

i0 i4 i8 i12

i1 i5 i9 i13

i2 i6 i10 i14

i3 i7 i11 i15

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1.2 s1,3

s2,0 s2,1 s2,2 s2.3

s3,0 s3,1 s3,2 s3,3

o0 o4 o8 o12

o1 o5 o9 o13

o2 o6 o10 o14

o3 o7 o11 o15

At the end of the cipher the state array is copied into the output array out as depicted.
The four bytes in a column form 32-bit words.

The cipher transforms state as follows:

1 procedure AES (in, out, key)
2 state ← in // copy in into state as described above
3 ADDROUNDKEY (state, key) // mix key into state
4 for r from 1 to 9 do
5 SUBBYTES (state) // substitute some bytes in state
6 SHIFTROWS (state) // shift rows of state cyclically
7 MIXCOLUMNS (state) // mix the columns up
8 ADDROUNDKEY (state, key[r×4, (r+1)×4 – 1]) // expand key, mix in
9 SUBBYTES (state)
10 SHIFTROWS (state)
11 ADDROUNDKEY (state, key[10×4, 11×4 – 1])
12 out ← state // copy state into out as described above

The cipher performs 10 rounds (denoted by the variable r), but the last round doesn’t
invoke MIXCOLUMNS. Each ADDROUNDKEY takes the 4 words from key and adds them into
the columns of state as follows:

[s0,c,s1,c,s2,c,s3,c,s4,c] ← [s0,c,s1,c,s2,c,s3,c,s4,c] ⊕ keyr×4+c, for 0 ≤ c < 4.

That is, each word of key is added to the corresponding column in state.

†† Horst Feistel, William A. Notz, and J. Lynn Smith. Some cryptographic techniques for
machine-to-machine data communications. Proceedings of the IEEE 63, 11 (November, 1975),
pages 1545–1554. An older paper by the designers of the DES providing background on why it
works the way it does. One should be aware that the design principles described in this paper are
incomplete; the really significant design principles are classified as military secrets.

Saltzer & Kaashoek Ch. 11, p. 104 June 24, 2009 12:29 am

11.8 Cryptography as a Building Block (Advanced Topic) 11–105

For the first invocation (on line 3) of ADDROUNDKEY r is 0, and in that round
ADDROUNDKEY uses the 128-bit key completely. For subsequent rounds, AES generates
additional key words using a carefully-designed algorithm. The details and justification
are outside of the scope of this textbook, but the flavor of the algorithm is as follows. It
takes earlier-generated words of the key and produces a new word, by substituting well-
chosen bits, rotating words, and computing the XOR of certain words.

The procedure SUBBYTES applies a substitution to the bytes of state according to a
well-chosen substitution table. In essence, this mixes the bytes of state up.

The procedure SHIFTROWS shifts the last three rows of state cyclically as follows:

sr,c ← sr,(c+shift(r, 4)) modulo 4, for 0 ≤ c < 4

The value of SHIFT is dependent on the row number as follows:

SHIFT(1,4) = 1, SHIFT(2,4) = 2, and SHIFT(3,4) = 3

The procedure MIXCOLUMNS operates column by column, applying a well-chosen
matrix multiplication.

In essence, AES is a complicated transformation of state based on key. Why this
transformation is thought to be computationally secure is beyond the scope of this text.
We just note that it has been studied by many cryptographers and it is believed to secure.

11.8.3.2 Cipher-Block Chaining
With block ciphers, the same input with the same key generates the same output. Thus,
one must be careful in using a block cipher for encryption. For example, if the adversary
knows that the plaintext is formatted for a printer and each line starts with 16 blanks,
then the line breaks will be apparent in the ciphertext because there will always be an 8
byte block of blanks, enciphered the same way. Knowing the number of lines in the text
and the length of each line may be usable for frequency analysis to search for the shared-
secret key.

A good approach to constructing ENCRYPT using a block cipher is cipher-block chain
ing. Cipher-block chaining (CBC) randomizes each plaintext block by XOR-ing it with the
previous ciphertext block before transforming it (see Figure 11.9). A dummy, random,
ciphertext block, called the initialization vector (or IV) is inserted at the beginning.

More precisely, if the message has blocks M1, M2, …, Mn, ENCRYPT produces the cipher
text consisting of blocks C0, C1, …, Cn as follows:

C0 = IV and Ci ←BC (Mi ⊕ Ci-1, key) for i = 1, 2,…, n

where BC is some block cipher (e.g., AES).

To implement DECRYPT, one computes:

Mi ← Ci-1 ⊕ BC (Ci, key)

CBC has cascading change propagation for the plaintext: changing a single message bit
(say in Mi), causes a change in Ci, which causes a change in Ci+1, and so on. CBC’s cas
cading change property, together with the use of a random IV as the first ciphertext

Saltzer & Kaashoek Ch. 11, p. 105 June 24, 2009 12:29 am

11–106 CHAPTER 11 Information Security

⊕

E E E

M1

C1 C2 C3

C1

D D D

C2

M1 M2 M3

IV

IV

M2 M3 C3

⊕

⊕⊕

⊕

⊕

(a) Encipher (b) Decipher

FIGURE 11.9

Cipher-block chaining.

block, implies that two encryptions of the same message with the same key will result in
entirely different-looking ciphertexts. The last ciphertext block Cn is a complicated key-
dependent function of the IV and of all the message blocks. We will use this property
later.

On the other hand, CBC has limited change propagation for the ciphertext: changing
a bit in ciphertext block Ci causes the receiver to compute Mi and Mi+1 incorrectly, but all
later message blocks are still computed correctly. Careful study of Figure 11.9 should
convince you that this property holds.

Ciphers with limited change propagation have important applications, particularly in
situations where ciphertext bits may sometimes be changed by random network errors
and where, in addition, the receiving application can tolerate a moderate amount of con
sequently modified plaintext.

11.8.4 Computing a Message Authentication Code

So far we used ciphers for only confidentiality, but we can use ciphers also to compute
authentication tags so that the receiver can detect if an adversary has changed any of the
bits in the ciphertext. That is, we can use ciphers to implement the SIGN and VERIFY inter
face, discussed in Section 11.2. Using shared-secret cryptography, there are two different
approaches to implementing the interface: 1) using a block or stream cipher or 2) using
a cryptographic hash function. We discuss both.

Saltzer & Kaashoek Ch. 11, p. 106 June 24, 2009 12:29 am

11.8 Cryptography as a Building Block (Advanced Topic) 11–107

11.8.4.1 MACs Using Block Cipher or Stream Cipher
CBC-MAC is a simple message authentication code scheme based on a block cipher in
CBC mode. To produce an authentication tag for a message M with a key k, SIGN pads
the message out to an integral number of blocks with zero bits, if necessary, and trans
forms the message M with cipher-block chaining, using the key k as the initialization
vector (IV). (The key k is an authentication key, different from the encryption key that
the sender and receiver may also use.) All ciphertext blocks except the last are discarded,
and the last ciphertext block is returned as the value of the authentication tag (the MAC).
As noted earlier, because of cascading change propagation, the last ciphertext block is a
complicated function of the secret key and the entire message.

VERIFY recomputes the MAC from M and key k using the same procedure that SIGN

used, and compares the result with the received authentication tag. An adversary cannot
produce a message M that the receiver will believe is authentic because the adversary
doesn’t know key k.

One can also build SIGN and VERIFY using stream ciphers by, for example, using the
cipher in a mode called cipher-feedback (CFB). CFB works like CBC in the sense that it
links the plaintext bytes together so that the ciphertext depends on all the preceding
plaintext. For the details consult the literature.

11.8.4.2 MACs Using a Cryptographic Hash Function
The basic idea for computing a MAC with a cryptographic hash function is as follows.
If the sender and receiver share an authentication key k, then the sender constructs a
MAC for a message M by computing the cryptographic hash of the concatenated message
k + M: HASH (k + M). Since the receiver knows k, the receiver can recompute HASH (k + M)
and compare the result with the received MAC. Because an adversary doesn’t know k,
the adversary cannot forge the MAC for the message M.

This basic idea must be refined to make the MAC secure because without modifica
tions it has problems. For example, Lucifer can add bytes to the end of the message
without the receiver noticing. This attack can perhaps be countered with adding the
length of the message to the beginning of the message. Cryptographers have given this
problem a lot of attention and have come up with a construction, called HMAC [Sug
gestions for Further Reading 11.5.5], which is said to be as secure as the underlying
cryptographic hash function. HMAC uses two strings:

• innerpad, which is the byte 36hex repeated 64 times

• outerpad, which is the byte 5Chex repeated 64 times

Using these strings, HMAC computes the MAC for a message M and an authentication
key k as follows:

HASH ((k ⊕ outerpad) + HASH ((k ⊕ innerpad) + M))

To compute the XOR, HMAC pads k with enough zero bytes to make it of length 64. If
k is longer than 64 bytes, HMAC uses HASH (k), padded with enough zero bytes to make
the result of length 64 bytes.

Saltzer & Kaashoek Ch. 11, p. 107 June 24, 2009 12:29 am

CHAPTER 11 Information Security11–108

Sidebar 11.7: Secure Hash Algorithm (SHA) SHA* is a family of cryptographic hash
algorithms. SHA-1 takes as input a message of any length smaller than 264 bits and produces
a 160-bit hash. It is cryptographic in the sense that given a hash value, it is computationally
infeasible to recover the corresponding message or to find two different messages that produce
the same hash.

SHA-1 computes the hash as follows. First, the message being hashed is padded to make it a
multiple of 512 bits long. To pad, one appends a 1, then as many 0’s as necessary to make it
64 bits short of a multiple of 512 bits, and then a 64-bit big-endian representation of the length
(in bits) of the unpadded message. The padded string of bits is turned into a 160-bit value as
follows.

The message is split into 512-bit blocks. Each block is expanded from 512 bits (16 32-bit
words M) to 80 32-bit words as follows (W(t) is the t-th word):

Mt, for t = 0 to 15
W(t) = (W(t–3) ⊕ (W(t–8) ⊕ (W(t–14) ⊕ (W(t–16)<<<1 for t = 16 to 79

where <<< is a left circular shift.

SHA uses four nonlinear functions and four 32-bit constants. The four functions are

(X & Y) | ((~X) & Z), for t = 0 to 19
F(t, x, y, z) = (X ⊕ Y ⊕ Z), for t = 20 to 39

(X & Y) | (X & Z) | (Y & Z), for t = 40 to 59
X ⊕ Y ⊕ Z, for t = 60 to 79

The constants are

5A827999hex, for t = 0 to 19 // 2.5/4 in hex
K (t) = 6ED9EBA1hex, for t = 20 to 39 // 3.5/4 in hex

8F1BBCDChex, for t = 40 to 59 // 5.5/5 in hex
CA62C1D6hex, for t = 60 to 79 // 10.5/4 in hex

(Sidebar continues)

* Secure hash standard, Federal Information Processing Standards Publications (FIPS PUBS)
180-1, National Institute of Standards and Technology (NIST), April 1995.

HMAC can be used with any good cryptographic hash function. Sidebar 11.7
describes SHA-1, a widely used cryptographic hash function. Even though SHA-1 must
have collisions, no one has uncovered an example of one so far. Recent findings (Febru
ary 2005) suggest weaknesses in SHA-1 and National Institute for Standards and
Technology is recommending switching to longer versions named SHA-256 and SHA
512. Some cryptographers are recommending that research on designing cryptographic
hash functions should start over.

Saltzer & Kaashoek Ch. 11, p. 108 June 24, 2009 12:29 am

11.8 Cryptography as a Building Block (Advanced Topic) 11–109

SHA uses five 32-bit variables (160 bits) to compute the hash. They are initialized and copied
into 5 temporary variables:

a ← A ← 67452301hex
b ← B ← EFCDAB89hex
c ← C ← 98BADCFEhex
d ← D ← 10325476hex
e ← E ← C3D2E1F0hex

The 160-bit hash value for a message is now computed as follows:

1 for each 512-bit block of M do
2 for t from 0 to 79 do
3 x ← (a <<< 5) + F(t, b, c, d) + e + W(t) + K(t)
4 e ← d
5 d ← c
6 c ← b <<< 30
7 b ← a
8 a ← x
9 A ← A + a; B ← B + b; C ← C + c; D ← D + d; E ← E + e
10 hash = A + B + C + D + E // concatenate A, B, C, D, and E

Other hashes in the SHA family are similar in spirit, but have different constants, word sizes,
and produce hash values with more bits. For example, SHA-256 has a different W, F, and
produces a 256-bit value.The justification for the SHA family of hashes is outside the scope of
this text.

11.8.5 A Public-Key Cipher

The ciphers described so far are shared-secret ciphers. Both the sender and receiver must
know the shared secret key. Public-key ciphers remove this requirement, which opens up
new kinds of applications, as the main body of the chapter described. The literature con
tains several public-key ciphers. We explain the first invented one because it is easy to
explain, yet is still believed to be secure.

11.8.5.1 Rivest-Shamir-Adleman (RSA) Cipher
The security of the RSA cipher relies on a simple-to-state (but hard to solve) well-known
problem in number theory [Suggestions for Further Reading 11.5.1]. RSA was devel
oped at M.I.T. in 1977 (patent number 4,405,829), and is named after its inventors:
Rivest, Shamir, and Adleman (RSA). It is based on properties of prime numbers; in par
ticular, it is computationally expensive to factor large numbers (for ages mathematicians
have been trying to come up with efficient algorithms with little success), but much
cheaper to find large primes.

Saltzer & Kaashoek Ch. 11, p. 109 June 24, 2009 12:29 am

11–110 CHAPTER 11 Information Security

The basic idea behind RSA is as follows. Initially you choose two large prime numbers
(p and q, each larger than 10100). Then compute n = p × q and z = (p – 1) × (q – 1), and
find a large number d that is relatively prime to z. Finally, find an e such that e × d = 1
(modulo z). After finding these numbers once, you have two keys, (e, n) and (d, n), which
are hard to derive from each other, even though n is public.

For now assume that the message to be transformed using RSA has a value P that is
greater than or equal to zero and smaller than n. (Sections 11.8.5.2 and 11.8.5.3 discuss
how to use RSA for signatures and encryption of any message in more detail.) The cipher
C is computed by raising P to the power e: Pe (modulo n). To decipher, we compute C to
the power d: Cd (modulo n).

The reason this works is as follows. Cd = Ped = Pk(p – 1)(q – 1) + 1, since e × d = 1 (modulo
z). Now, Pk(p – 1)(q – 1)+1 = P × Pk(p – 1)(q – 1) = P × P0 = P × 1 = P. The theorem that the
exponent k(p – 1)(q – 1) = 0 (modulo n) is a result by Euler and Fermat (see I. Niven and
H.S. Zuckerman, An introduction to the Theory of Numbers, Wiley, New York, 1980).

An example with concrete numbers may illuminate the abstract mathematics. If one
chooses p = 47 and q = 59, then e is 17 and d = 157 because e × d = 1 (modulo 2668).
This gives us two keys: (17, 2773) and (157, 2773). Now we can transform any P with
a value between 0 and 2773. For example, if P is 31, C is 587 = 3117 (modulo 2773). To
reverse the transform, we compute 587157 = 31 (modulo 2773).

One way to break this scheme is to factor the modulus (n). In 1977 Ron Rivest (the
R in RSA) estimated that factoring a 125-digit decimal number would take 40 quadril
lion years, using the best known algorithms and state-of-the-art hardware running at 1
million instructions per second*. To test this claim and to encourage research into com
putational number theory and factoring, RSA Security, the company commercializing
RSA, has posted several products of two primes, also called RSA numbers, as factoring
challenges. Understanding the speed at which factoring can be done helps in choosing a
suitable key length for a desired level of security.

In 1994, a group of researchers under the guidance of A.J. Lenstra factored a 129
digit decimal RSA number in 8 months using the Internet as a parallel computer, with
out paying for the cycles†. It required 5,000 MIPS years (i.e., 5,000 one-million
instructions-per-second computers each running for one year). Rivest’s calculation is an
example of the hazards involved in estimating an historic work factor. Better algorithms
have been developed, allowing the computation to be performed in only 5,000 MIPS
years instead of 40 quadrillion MIPS years, and communication technology has
improved substantially, allowing a 5,000 or more computers to be harnessed to perform
that much computation in only one year.

In November 2005, the RSA challenge number of 193 decimal digits was factored in
3 months using even better algorithms and faster computers (80 2.2 Gigahertz Opteron

* Martin Gardner, Mathematical games: A new kind of cipher that would take million of years to break,
Scientific American 237, pages 120–124, August 1977.

† K. Leutwyler, Superhack: forty quadrillion years early, 129-digit code is broken, Scientific American,
271, 17–20, 1994.

Saltzer & Kaashoek Ch. 11, p. 110 June 24, 2009 12:29 am

11.8 Cryptography as a Building Block (Advanced Topic) 11–111

processors). A 193 decimal digit number is 640 binary bits. Currently it is considered
secure to use 1024-bit RSA numbers as keys. The RSA challenge numbers of 704, 768,
896, 1024, 1536, and 2048 bits are still open.

The security of RSA is based on its historical work factor. At this point, there are no
known algorithms for factoring large numbers quickly. Although several other public-
key ciphers exist, some of which are not covered by patents, to date no public-key system
has been found for which one can prove a sufficiently large lower bound on the work fac
tor. The best statement one can make now is the work factor based on the best known
algorithms. It might be possible that some day a technique is discovered that may lead to
fast factoring (e.g., using quantum computation), and thereby undermine the security of
RSA.

RSA needs prime numbers; fortunately, there are many of them and generating them
is much easier than factoring a product of two primes: ‘‘is n prime?’’ is a much easier
question than ‘‘what are the factors of n?’’ There are approximately n/ln(n) prime num
ber less than or equal to n. Thus, for numbers that can be expressed with 1024 bits or
fewer, there are approximately 21021 prime numbers. Therefore, we won’t run out of
prime numbers, if everyone needs two prime numbers different from everyone else’s
primes. In addition, an adversary won’t have a lot of success creating a database that con
tains all prime numbers because there are so many.

11.8.5.2 Computing a Digital Signature
An important use of public-key ciphers is to implement the SIGN and VERIFY interface. If
this interface is implemented using public-key cryptography, the authentication tag is
called a digital signature. The basic idea—which needs refinement to be secure—for
computing an RSA digital signature is as follows. SIGN produces an authentication tag by
raising M to the private exponent. VERIFY raises the authentication tag to the public expo
nent, compares the result to the received message, and returns ACCEPT if they match and
REJECT if don’t.

The implementation doesn’t always guarantee authenticity, however. For example, if
Lucifer succeeds in having Alice sign messages M1 and M2, then he can claim that Alice
also signed M3, where M3 is the product of M1 and M2: (M3)d = (M1 × M2)d = M1

d × M2
d

(modulo n). Thus, if Lucifer sends M3 to Bob, when Bob uses Alice’s public key to verify
message M3 that message will appear to have been signed by Alice.

To avoid this problem (and some others) SIGN usually computes a cryptographic hash
of the message, and creates an authentication tag by raising this hash to the private expo
nent. This also has the pleasant side effect that it simplifies signing large messages because
n only has to be larger than the value of the hash output, and we don’t have to worry
about splitting the message into blocks and signing each block. Upon receipt, VERIFY

recomputes the hash from the received version of the message, raises the hash to the pub
lic exponent, and compares the result with the received authentication tag.

Using a cryptographic hash helps in constructing a secure SIGN and VERIFY but isn’t suf
ficient either. There is a substantial literature that presents even better schemes that also
address other subtle issues that come up in the design of a good digital signature scheme.

Saltzer & Kaashoek Ch. 11, p. 111 June 24, 2009 12:29 am

11–112 CHAPTER 11 Information Security

11.8.5.3 A Public-Key Encrypting System
ENCRYPT and DECRYPT can also be implemented using public-key cryptography, but because
operations in public-key systems are expensive (e.g., exponentiation in RSA instead of
XOR in RC4), public-key implementations of ENCRYPT and DECRYPT are used sparingly. As
described in Section 11.5, public-key encryption is used only to encrypt a newly-minted
shared-secret key during the set up of a connection between a sender and a receiver, and
then that secret-secret key is used for shared-secret encryption of further communication
between the sender and the receiver. For example, SSL/TLS, which is described in the
next section, uses this approach.

The basic idea, which needs refinement to be secure, for implementing ENCRYPT and
DECRYPT using RSA is as follows. Split the message M into fixed size blocks P so that the
value of P is smaller than n, then ENCRYPT raises P to the public exponent (d). DECRYPT raises
the encrypted block to the private exponent (e). This order is exactly the opposite of the
one for SIGN; SIGN raises to the private exponent and VERIFY raises to the public exponent.

That the order is the opposite doesn’t matter because RSA is reversible. Since (Md)e =
(Me)d = Med (modulo n), one can raise to the public exponent (e) first, and raise to the
private exponent (d) second, or vice versa, and either way obtain M back. It is claimed
that the security of RSA is equally good both ways.

This basic implementation is relatively weak; there are a number of well-known
attacks if the RSA cipher is used by itself for encrypting. To counter these attacks, ENCRYPT

should pad short blocks with independent randomized variables so that the value of P is
close to n, and then raise the padded P to the public exponent. In addition, ENCRYPT

should run the message through what is called an all or nothing transform (AONT). An
AONT is a non-secret, reversible transformation of a message that ensures that the
receiver must have all of the bits of the transformed message in order to recover any of
the bits of the original message. Thus, an adversary cannot launch an attack by just con
centrating on individual blocks of the message. Readers should consult the literature to
learn what other measures are necessary to obtain a good implementation of ENCRYPT and
DECRYPT using RSA

11.9 .Summary
Section 11.1 of this chapter provided a general perspective on how to think about build
ing secure systems, including a set of design principles, and was then followed by 7
sections of details. One might expect, after reading all this text, that one should now
know how to build secure computer systems.

Unfortunately, this expectation is incorrect. Section 11.11 relates several war stories
of security system failures that have occurred over a 40-year time span. Failures from
decades past might be explained as mistakes while learning that have helped lead to the
better understanding now provided in this chapter. But most of the design principles
presented in this chapter were formulated and published back in 1975. The section
includes several examples of recent failures, which are reinforced by regular reports in the

Saltzer & Kaashoek Ch. 11, p. 112 June 24, 2009 12:29 am

11.9 .Summary 11–113

media about yet another virus, worm, distributed denial-of-service attack, identity theft,
stolen credit card, or defaced Web site. If we know how to build secure systems, why does
the real world of the Internet, corporate services, desktop computers, and personal com
puters seem to be so vulnerable?

The question does not have a single, simple answer. A lot of different things are tan
gled together. There are honest and dishonest opinions that the security problem isn't
that important, and thus it is unnecessary to get it right. Since organizations prefer not
to disclose security problems, it is even difficult to establish what the cost of a security
compromise is. Some problems are due to designers just building systems that are too
complex. Some problems come from lack of awareness. Some problems are due to
designers attempting to build secure systems on Internet time, and not taking the time
to do it properly. Some problems arise from ignorance. To get a handle on this general
question it is helpful to split the question into several more specific questions:

• 	The Internet protocols do not provide a default of authentication of message
source and privacy of message contents. Why? As discussed in Section 11.1, when
the Internet was designed processors weren’t fast enough to apply cryptographic
transformations in software, the deployment of cryptographic-transformation
hardware was hindered by government export regulations, and good key
distribution protocols hadn’t been designed yet. Since the Internet was originally
primarily used by a cooperative set of academics, this lack of security was also not
a serious omission. By the time it became economically feasible to do ciphers in
software, key distribution was understood, and government export regulations
were relaxed, the insecure protocols were so widespread that it was too hard to do
a retrofit. Section 11.10 describes one of the now most widely-used secure
protocols for Web transactions on the Internet.

• 	 Personal computer systems do not come with enforced modularity that creates
strong internal firewalls between applications. Why? The main reasons are keeping
the cost low and naivité. Initially PCs were designed to be inexpensive computers
for personal use. Few people, or perhaps nobody, anticipated that the rapid
improvements in technology would lead to the current situation where PCs are the
dominant platform for all computing. Furthermore, as explained in Section 5.7, it
took the PC designers and operating system vendors for PCs several iterations to
get the designs for enforced modularity correct. Currently vendors are struggling
to make PCs easier to configure and manage so that they aren’t as vulnerable to
attacks.

• 	Inadequately secured computers are attached to the Internet. Why? Most
computers on the Internet are personal computers. When originally conceived
personal computers were for personal computing, which at the time was editing
documents and playing games. Network attacks were impossible, and thus
network security was just not a requirement. But the value of being attached to the
Internet grew rapidly as the number of available services increased. The result was

Saltzer & Kaashoek Ch. 11, p. 113	 June 24, 2009 12:29 am

11–114 CHAPTER 11 Information Security

that most users pursued that evident value, without much concern about the risks,
which at first, despite warnings, seemed mostly hypothetical.

• 	 UNIX systems, commonly used as services, have enforced modularity, but many
UNIX services were originally (and some still seem to be) vulnerable to buffer-
overrun attacks (see Sidebar 11.4), which subvert modular boundaries. Why are
these buffer overruns so difficult to eradicate? As explained in the sidebar, the main
reason is the success of the C programming language, which was not designed to
check array bounds. Much system software is written in C and has been deployed
successfully for decades. A drastic change to the C programming language (or its
library) is now difficult because change would break most existing C programs. As
a result, each service program must be fixed individually.

• 	Why isn’t software verified for security? Recent progress has been made in
analyzing cryptographic algorithms, checking software for common security
problems, and verifying security protocols within an adversary model. All these
techniques are useful for verifying properties of a system, but they don’t prove that
a system is secure. In general, we don’t know what properties to verify to proof
security.

• 	 Why don't basic economic principles reward the company that produces secure
systems? For example, why don't customers buy the more secure products, why
don't firms that insure companies against security attacks cause software to be
better, etc.? Economics is indeed a factor in information security, but the
economic factors interact in surprising ways, and these questions don't have simple
answers. Sidebar 11.8 summarizes some of the interactions, and their
consequences.

• 	 Why doesn't security certification help more? There are no adequate standards for
what kind of attacks a minimal secure system should protect against. Standards
that do exist for security requirements are out of date because they don’t cover
network security. Standardization organizations have a difficult time keeping up
with the rate of change in technology.

• 	Many secure systems require a public key infrastructure, but no universal PKI
exists. Why? PKIs exist only in isolated islands, limited to a single institution or
application. For example, there is a specialized PKI that supports only the use of
SSL/TLS in the World-Wide Web. Why doesn’t a universal one exist? A reason is
that realistically it is difficult to develop a single one that is satisfactory to everyone.
Anyone trying to propose one has run into political and economic problems.

• 	Many organizations have installed network firewalls between their internal
network and the Internet. Do they really help? Yes, but in a limited way, and they
have the danger of creating a false sense of security. Because desktop and service
operating systems have so many security problems (for the reasons mentioned

Saltzer & Kaashoek Ch. 11, p. 114	 June 24, 2009 12:29 am

11.9 .Summary 11–115

Sidebar 11.8: Economics of computer security Why is the company that produces software
with fewest security vulnerabilities not the most successful one? Ross Anderson has studied
some of the many economic factors in play and analyzed their impact on information security*.
First, there are misaligned incentives. For example, under U.S. law it is the bank’s burden to
prove that a fraudulent withdrawal at an automated teller machine (ATM) is the customer’s
fault, but under U.K. law, it is the customer’s burden to prove that a fraudulent ATM
withdrawal is the bank’s fault. One might think that U.K. banks spend less money on security,
but Anderson reports that the opposite is true: U.K. banks spend more money on security and
experience more fraud. It appears that U.K. banks became lazy and careless, knowing that
customers complaints of fraud did not require a careful response on their part.

Second, there are network externalities: the larger the network of developers and users the more
valuable that network is to each of its members. Selecting a new operating system partly
depends on the number of other people who made the same choice (i.e., because it simplifies
exchanging files in closed formats). While an operating system vendor is building market
dominance, it must appeal to vendors that complement the operating system as well as the
customers. Since security could get in the way of vendors complementing the operating system,
operating system vendors have a strong incentive to ignore security in the beginning in favor
of features that might help obtain market leadership, and address security later. Unfortunately,
adding on security later is never as good as security that is part of the original design.

Third, there are security externalities. For example, if a PC owner considers spending $40 to
buy a good firewall, that owner is not the primary beneficiary; what the firewall really protects
is targets like Google and Microsoft because because by avoiding becoming a bot the firewall
installer is helping prevent distributed denial-of-service attacks on other sites. Thus the
incentive to purchase and install the firewall is low. Bot herders understand this phenomenon
well, so they are careful not to attack the files stored on the bots themselves or otherwise give
the owner of the bot any incentive to install the firewall.

Finally, security risks are interdependent. A firm’s computer infrastructure is often connected
to infrastructure under control of others (e.g., the Internet) or uses software written by others,
and so the firm’s efforts may be undermined by security failures elsewhere. In addition, attacks
often exploit a weakness in a system used by many firms. This interdependence makes security
risks unattractive to insurers, and as a result there are no market pressures from them.

The impact of economics on computer security is an emerging field of study, and as it develops
the explanations might change, the actions of companies may change, but for now it is clear
simple economic analysis may miss important interactions.

* Ross Anderson and Tyler Moore, The Economics of Information Security, Science, 314 (5799),
Oct. 2006, pp. 610–613.

Saltzer & Kaashoek Ch. 11, p. 115 June 24, 2009 12:29 am

11–116 CHAPTER 11 Information Security

above), end-to-end security is difficult to achieve. If firewalls are properly deployed
they can keep the external, low-budget adversaries away from the vulnerable
internal computers. But firewalls don’t help against inside adversaries, nor against
adversaries that find ways around the firewall to reach the inside network from the
outside (e.g., by using the internal wireless network from outside, dialing into a
desktop computer that is connected both to the internal network and the
telephone system, by hitching rides on data or program files that inside users
download through the firewall or load from detachable media, etc.)

• 	 One hears reports that wireless network (WiFi or 802.11b/g) security is weak. This
is a relatively new design. Why is it so vulnerable? As mentioned in Section 11.1,
one reason appears to be that the security design was done by a committee that was
expensive to join, and that only committee members were allowed to review the
design. As a result, although the design was nominally open, it was effectively
closed, and few security experts actually reviewed the design until after it was
deployed, at which point several security weaknesses (for an example see page
11–51) were identified.

• 	 Cable TV scrambling systems, DSS (Satellite TV) security, the CSS system for
protecting DVD movie content, and a proposed music watermarking system, were
all compromised almost immediately following their deployment. Why were these
systems so easy to break? Many of these systems used a closed design and the right
people didn’t review it. When the system was deployed, experts investigated the
design and immediately found problems.

In addition to these more specific reasons, there are two general problems that con
tribute to the large number of security vulnerability. First, the rate of innovation is high
in computer systems. New technologies emerge and are deployed must faster than their
designers anticipated and the lack of a security plan in the initial versions becomes a
problem suddenly. Furthermore, successful technologies become deployed for applica
tions that the designer didn’t anticipate and often turn out to have additional security
requirements. Second, no one has a recipe for building secure systems because these sys
tems try to achieve a negative goal. Designing and implementing secure systems requires
experts that are extremely careful, have an eye for detail, and exhibit a paranoid attitude.
As long as the rate of innovation is high and there is no recipe for engineering secure sys
tems, it is likely that security exploits will be with us. The TLS example in Section 11.10
describes a successful secure protocol (with some growing pains to get it right) and the
examples in Section 11.11 illustrate many ways to get things wrong.

11.10 Case Study: Transport Layer Security (TLS) for the Web
The Transport Layer Security (TLS) protocol* is a widely used security protocol to estab
lish a secure channel (confidential and authenticated) over the Internet. The TLS

Saltzer & Kaashoek Ch. 11, p. 116	 June 24, 2009 12:29 am

11.10 Case Study: Transport Layer Security (TLS) for the Web 11–117

protocol is at the time of this writing a proposed international standard. TLS is a version
of the Socket Security Layer (SSL) protocol, defined by Netscape in 1999, so current lit
erature frequently uses the name “SSL/TLS” protocol. The TLS protocol has some
improvements over the last version (3) of the SSL protocol, and this case study describes
the TLS protocol, version 1.2.

The TLS protocol allows client/service applications to communicate in the face of
eavesdroppers and adversaries who would tamper with and forge messages. In the hand
shake phase, the TLS protocol negotiates, using public-key cryptography, shared-secret
keys for message authentication and confidentiality. After the handshake, messages are
encrypted and authenticated using the shared-secret keys. This case study describes how
TLS sets up a secure channel, its evolution from SSL, and how it authenticates principals.

11.10.1 The TLS Handshake

The TSL protocol consists of several protocols, including the record protocol which
specifies the format of messages between clients and services, the alert protocol to com
municate errors, the change cipher protocol to apply a cipher suite to messages sent using
the record layer protocol, and several handshaking protocols. We describe the handshake
protocol for the case where an anonymous user is browsing a Web site and requires ser
vice authentication and a secure channel to that service.

Figure 11.10 shows the handshake protocol for establishing a connection from a cli
ent to a server. The CLIENTHELLO message announces to the service the version of the
protocol that the client is running (SSL 2.0, SSL 3.0, TLS 1.0, etc.), a random sequence
number, and a prioritized set of ciphers and compression methods that the client is will
ing to use. The session_id in the CLIENTHELLO message is null if the client hasn’t connected
to the service before.

The service responds to the CLIENTHELLO message with 3 messages. It first replies with
a SERVERHELLO message, announcing the version of the protocol that will be used (the
lower of the one suggested by the client and the highest one supported by the service), a
random number, a session identifier, and the cipher suite and compression method
selected from the ones offered by the client.

To authenticate the service to the client, the service sends a SERVERCERTIFICATE mes
sage. This message contains a chain of certificates, ordered with the service’s certificate
first followed by any certificate authority certificates proceeding sequentially upward.
Usually the list contains just two certificates: a certificate for the public key of the service
and a certificate for the public key of the certification authority. (We will discuss certif
icates in more detail in Section 11.10.3.)

After the service sends its certificates, it sends a SERVERHELLODONE message to indicate
that it is done with the first part of the handshake. After receiving this message and after
satisfactorily verifying the authenticity of the service, the client generates a 48-byte

* Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) protocol Version 1.2. RFC
4346. November 2007.

Saltzer & Kaashoek Ch. 11, p. 117 June 24, 2009 12:29 am

11–118 CHAPTER 11 Information Security

Client Service

1. {ClientHello, client_version, randomclient, session_id, cipher_suites, compression_f}

2. {ServerHello, server_version, randomserver, session_id, cipher_suite, compression_f}

3. {ServerCertificate, certificate_list}

4. {ServerHelloDone}

5. {ClientKeyExchange, ENCRYPT (pre_master_secret, ServerPubKey)}

6. {ChangeCipherSpec, cipher_suite}

client_write_key
7. {Finished, MAC (master_secret, messages 1, 2, 3, 4, 5)}client_write_MAC_secret

8. {ChangeCipherSpec, cipher_suite}

server_write_key
9. {Finished, mac (master_secret, messages 1, 2, 3, 4, 5, 7)}server_write_MAC_secret

client_write_key
10. {Data, plaintext}

client_write_MAC_secret

FIGURE 11.10

Typical TLS exchange of handshake protocol messages.

pre_master_secret. TLS supports multiple public-key systems and depending on the
choice of the client and service, the pre_master_secret is communicated to the service in
slightly different ways.

In practice, TLS typically uses a public-key system, in which the client encrypts the
pre_master_secret with the public key of the service found in the certificate, and sends
the result to the service in the CLIENTKEYEXCHANGE message. The pre_master_secret thus
can be decrypted by any entity that knows the private key that corresponds to the public
key in the certificate that the service presented. The security of this scheme therefore

Saltzer & Kaashoek Ch. 11, p. 118 June 24, 2009 12:29 am

11.10 Case Study: Transport Layer Security (TLS) for the Web 11–119

depends on the client carefully verifying that the certificate is valid and that it corre
sponds to the desired service. This point is explored in more detail in Section 11.10.3,
below.

The pre_master_secret is used to compute the master_secret using the service and
client nonce (“+” denotes concatenation):

master_secret ← PRF (pre_master_secret, “master secret”, randomclient+ randomserver)

PRF is a pseudorandom function, which takes as input a secret, a label, and a seed. As out
put it generates pseudorandom bytes. TLS assigns the first 48 bytes of the PRF output to
the master_secret. The TLS version 1.2 uses a PRF function that is based on the HMAC
construction and the SHA-256 hash function (see Section 11.8 for the HMAC construc
tion and the SHA family of hash functions).

It is important that the master_secret be dependent both on the pre_master_secret

and the random values supplied by the service and client. For example, if the random
number of the service were omitted from the protocol, an adversary could replay a
recorded conversation without the service being able to tell that the conversation was old.

After the master_secret is computed, the pre_master_secret should be deleted from
memory, since it is no longer needed and continuing to store it would just create an
unnecessary security risk.

After sending the encrypted pre_master_secret, the client sends a CHANGECIPHERSPEC

message. This message* specifies that all future message from the client will use the
ciphers specified as the encrypting and authentication ciphers.

The keys for message encrypting and authentication ciphers are computed using the
master_secret, randomclient, and randomserver (which both the client and the service now
have). Using this information a key block is computed:

key_block ← PRF (master_secret, “key expansion”, randomserver + randomclient)

until enough output has been produced to provide the following keys:

client_write_MAC_secret[CipherSpec.hash_size]

server_write_MAC_secret[CipherSpec.hash_size]

client_write_key[CipherSpec.key_material]

server_write_key[CipherSpec.key_material]

client_write_IV[CipherSpec.IV_size]

server_write_IV[CipherSpec.IV_size]

The first 4 variables are the keys for authentication and confidentiality, one for each
direction. The last 2 variables are the initialization vectors, one for each direction, for
ciphers using CBC mode (see Section 11.8). These variables together are the state neces
sary for the client and the service to communicate securely.

Now the client sends a FINISHED message to announce that it is done with the hand
shake. The FINISHED message contains at least 12† bytes of the following output:

* The TLS standard considers ChangeCipherSpec not part of the handshake protocol, but part of
the Change Cipher Spec protocol, even though the handshake protocol uses it.

† Clients may specify in the HELLO message that they prefer more bytes.

Saltzer & Kaashoek Ch. 11, p. 119 June 24, 2009 12:29 am

11–120 CHAPTER 11 Information Security

PRF (master_secret, finish_label, HASH (handshake_messsages))

The FINISHED message is a verifier of the protocol sequence so far (the value of all mes
sages starting at the CLIENTHELLO message, but not including the FINISHED message). The
client use the value “client finished” for finish_label. HASH is the same hash function used
for the PRF, SHA-256. If the service verifies the hash, the service and client agree on the
protocol sequence and the master_secret. TLS encrypts and authenticated the FINISHED

message using the cipher suite that the client and service agreed on in the HELLO messages.
After the service receives the client’s FINISHED message, it sends a CHANGECIPHERSPEC

message, informing the client that all subsequent messages from service to client will be
encrypted and authenticated with the specified ciphers. (The client and service can use
different ciphers for their traffic.) Like the client, the service concludes the handshake
with a FINISHED message, but uses the value “server finished” for finish_label. After both
finish messages have been received and checked out correctly, the client and service have
a secure (that is, encrypted and authenticated) channel over which they can carry on the
remainder of their conversation.

11.10.2 Evolution of TLS

The TLS handshake protocol is more complicated than some of the protocols that we
described in this chapter. In a large part, this complexity is due to all the options TLS
supports. It allows a wide range of ciphers and key sizes. Service and client authentication
are optional. Also, it supports different versions of the protocol. To support all these
options, the TLS protocol needs a number of additional protocol messages. This makes
reasoning about TLS difficult, since depending on the client and service constraints, the
protocol has a different set of message exchanges, different ciphers, and different key
sizes. Partly because of these features the predecessors of TLS 1.2, the earlier SSL proto
cols, were vulnerable to new attacks, such as cipher suite substitution and version
rollback attacks.

In version 2 of SSL, the adversary could edit the CLIENTHELLO message undetected,
convincing the service to use a weak cipher, for example one that is vulnerable to brute-
force attacks. SSL Version 3 and TLS protect against this attack because the FINISHED

message computes a MAC over all message values.
Version 3 of SSL accepts connection requests from version 2 of SSL. This opens a ver

sion-rollback attack, in which an adversary convinces the service to use version 2 of the
protocol, which has a number of well-documented vulnerabilities, such as the cipher sub
stitution attack. Version 3 appears to be carefully designed to withstand such attacks, but
the specification doesn’t forbid implementations of version 2 to resume connections that
were started with version 3 of the protocol. The security implications of this design are
unclear.

One curious aspect of version 3 of the SSL protocol is that the computation for the
MAC of the FINISHED messages does not include the CHANGECIPHER messages. As pointed
out by Wagner and Schneier, an adversary can intercept the CHANGECIPHER message and

Saltzer & Kaashoek Ch. 11, p. 120 June 24, 2009 12:29 am

11.10 Case Study: Transport Layer Security (TLS) for the Web 11–121

delete it, so that the service and client don’t update their current cipher suite. Since mes
sages during the handshake are not encrypted and authenticated, this can open a security
hole. Wagner and Schneier describe an attack that exploits this observation [Suggestions
for Further Reading 11.5.4]. Currently, widely used implementations of SSL 3.0 protect
against this attack by accepting a FINISHED message only after receiving a CHANGECIPHER

message.
TLS is the international standard version of SSL 3.0, but also improves over SSL 3.0.

For example, it mandates that a FINISHED message must follow immediately after a
CHANGECIPHER message. It also replaces ad-hoc ways of computing hash functions in var
ious parts of the SSL protocol (e.g., in the FINISHED message and master_secret) with a
single way, using the PRF function. TLS 1.1 has a number of small security improvements
over 1.0. TLS 1.2 improves over TLS 1.1 by replacing an MD5/SHA-1 implementation
of PRF with one specified in the cipher suite in the HELLO messages, preferable based on
SHA-256. This allows TLS to evolve more easily when ciphers are becoming suspect
(e.g., SHA-1).

11.10.3 Authenticating Services with TLS

TLS can be used for many client/service applications, but its main use is for secure Web
transactions. In this case, a Web browser uses TLS to set up a message-authenticated,
confidential communication connection with a Web service. HTTP requests and
responses are sent over this secure connection. Since users typically visit Web sites and
perform monetary transactions at these sites, it is important for users to authenticate the
service. If users don’t authenticate the service, the service might be one run by an adver
sary who can now record private information (e.g., credit card numbers) and supply fake
information. Therefore, a key problem TLS addresses is service authentication.

The main challenge for a client is to convince itself that the service’s public key is
authentic. If a user visits a Web site, say amazon.com (an on-line book retailer), then a
user wants to make sure that the Web site the user connects to is indeed owned by Ama
zon.com Inc. The basic idea is for Amazon to sign its name with its private key. Then,
the client can verify the signed name using Amazon’s public key. This approach reduces
the problem to securely distributing the public key for Amazon. If it is done insecurely,
an adversary can convince the client that the adversary has the public key of Amazon, but
substitute the adversary’s own public key and sign Amazon’s name with the adversary’s
private key. This problem is an instance of the key-distribution problem, discussed in
Section 11.5.

TLS relies on well-known certification authorities for key distribution. An organiza
tion owning a Web site buys a certificate from one or more certification authorities. Each
authority runs a certification check to validate that the organization is the one it claims
to be. For example, a certification authority might ask Amazon Inc. for articles of incor
poration to prove that it is the entity it claims to be. After the certification authority has
verified the identity of the organization, it issues a certificate. The certificate contains the
public key of the organization and the name of the organization, signed with the private

Saltzer & Kaashoek Ch. 11, p. 121 June 24, 2009 12:29 am

11–122 CHAPTER 11 Information Security

structure certificate
version
serial_number
signature_cipher_identifier
issuer_signature
issuer_name
subject_name
subject_public_key_cipher_identifier
subject_public_key
validity_period

FIGURE 11.11

Some fields in version 3 of the X.509 certificate

key of the certificate authority. (The service sends the certificates in step 3 of the hand
shake protocol, described in Section 11.10.1.)

The client verifies the certificate as follows. First, it obtains in a secure way the public
key of certification authorities that it is willing to trust. Typically a number of public keys
come along with the distribution of a Web browser. Second, after receiving the service
certificates, it uses the public keys of the authorities to verify one of the certificates. If one
of the certificates verifies correctly, the client can be confident about the name of the
organization owning the service. Whether a user can trust the organization that goes by
that name is a different question and one that the user must resolve using psychological
means.

TLS uses certificates that are standardized by the ISO X.509 standard. Figure 11.11
shows some of the fields in Version 3 of X.509 certificates (the standard specifies them
in a different order). The version field specifies the version of the certificate (it would be
3 in this example). The serial_number field contains a nonce assigned by the issuing cer
tification authority and different for every certificate. The signature_cipher_identifier

field identifies the algorithm used by the authority to sign this certificate. This informa
tion allows a client of the certification authority to know which of several standard
algorithms to use to verify the issuer_signature field, which contains the value of the cer
tificate’s signature. If the signature checks out, the recipient can believe that the
information in the certificate is authentic. The issuer_name field specifies the real-world
name of the certificate authority. The subject_name field specifies the real-world name
for the principal. The two other subject fields specify the public-key cipher the principal
wants to use (say RSA), and the principal’s public key.

The validity_period field specifies the time for which this signature is valid (the start
and expiry dates and times). The validity_period field provides a weak method for key
revocation. If Amazon obtains a certificate and the certificate is valid for 12 months (a
typical number) and if the next day an adversary compromises the private key of ama
zon.com, then the adversary can impersonate amazon for the next 12 months. To

Saltzer & Kaashoek Ch. 11, p. 122 June 24, 2009 12:29 am

http:zon.com

11.10 Case Study: Transport Layer Security (TLS) for the Web 11–123

counter this problem a certification authority maintains a certification revocation list,
which contains compromised certificates (identified by the certificate’s serial number).
Anyone can download the certificate revocation list to check if a certificate is on this
blacklist. Unfortunately, revocation lists are not in widespread use today. Good certifi
cate revocation procedures are an open research problem.

The crucial security step for establishing a principal’s identity is the certification pro
cess executed by the certification authority. If the authority issues certificates without
checking out the identity of the organization owning the service, the certificate doesn’t
improve security. In that case, Lucifer could ask the certification authority to create a cer
tificate for Amazon.com Inc. If the authority doesn’t check Lucifer’s identity, Lucifer will
obtain a certificate for Amazon Inc. that binds the name Amazon Inc. to Lucifer’s public
key, allowing Lucifer to impersonate Amazon Inc. Thus, it is important that the certifi
cation authority do a careful job of certifying the principal’s identity. A typical
certification procedure includes paying money to the authority, sending by surface mail
the articles of incorporation (or equivalent) of the organization. The authority will run a
partly manual check to validate the provided information before issuing the certificate.

Certification authorities face an inherent conflict between good security and conve
nience. The procedure must be thorough enough that the certificate means something.
On the other hand, the certification procedure must be convenient enough that organi
zations are able or willing to obtain a certificate. If it is expensive in time and money to
obtain a certificate, organizations might opt to go for an insecure solution (i.e., not
authenticating their identity with TLS). In practice, certification authorities have a hard
time striking the appropriate balance and therefore specialize for a particular market. For
example, Verisign, a well-known certification authority, is mostly used by commercial
organizations. Private parties who want to obtain a certificate from Verisign for their per
sonal Web sites are likely to find Verisign’s certification procedure impractical.

Ford and Baum provide a nice discussion of the current practice for secure electronic
commerce using certificate authories, certificates, etc., and the legal status of certificates
[Suggestions for Further Reading 1.3.17].

11.10.4 User Authentication

User authentication can in principle be handled in the same way as server authentication.
The user could obtain a certificate from an authority testifying to the user’s identity.
When the server asks for it, the user could provide the certificate and the server could
verify the certificate (and thus the user’s identity according to a certification authority)
by using the public key of the authority that issued the certificate. Extensions of the TLS
handshake protocol support this form of user authentication.

In practice, and in particular in the Web, user authentication doesn’t rely on user cer
tificates. Some organizations run a certificate authority and use it to authenticate
members of their organization. However, often it is too much trouble for a user to obtain
a certificate, so few Web users are willing to obtain a certificate. Instead, many servers

Saltzer & Kaashoek Ch. 11, p. 123 June 24, 2009 12:29 am

11–124 CHAPTER 11 Information Security

authenticate users based on the IP address of the client machine or based on shared pass-
phrase. Both methods are currently implemented insecurely.

Using the IP address for authentication is insecure because it is easy for an adversary
to spoof an IP address. Thus, when the server checks whether a user on a machine with
a particular IP address has access, the server has no guarantees. Typically, this method is
used inside an organization that puts all it’s machines behind a firewall. The firewall
attempts to keep adversaries out of the organization’s network by monitoring all network
traffic that is coming from the Internet and blocking bad traffic (e.g., a packet that is
coming from outside the firewall but an internal IP address).

Passphrase authentication is better. In this case, the user sets up an account on the
service and protects it with a passphrase that only the user and the service know. Later
when the user visits the service again, the server puts up a login page and asks the user to
provide the passphrase. If the passphrase is valid, the server assumes that the user is the
principal who created the account.

To avoid having the user to type the password on each request, services can exploit a
Web mechanism called cookies. A service sends a cookie, a service-specific piece of infor
mation, to the user’s Web browser, which stores it for us in later requests to the service.
The service sends the cookie by including in a response a SET_COOKIE directive containing
data to be stored in the cookie. The browser stores the cookie in memory. (In practice,
there may be many cookies, so they are named, but for this description, assume that there
is only one and no name is needed.) On subsequent calls (i.e., GET or POST) to the service
that installed the cookie, the browser sends the installed cookie along with the other
arguments to GET or POST.

Web services can use cookies for user authentication as follows. When the user logs
in, the service creates a cookie that contains information to authenticate the user later
and sends it to the user’s browser, which stores it for use in future requests to this service.
Every subsequent request from that browser will include a copy of the cookie, and the
service can use the information stored in the cookie to learn which user issued this
request. If the cookie is missing (for example, the user is using a different browser), the
service will return an error to the browser and ask the user to login again. The security
of this scheme depends on how careful the service is in constructing the authenticating
cookie. One possibility is to create a nonce for a session and sign the nonce with a MAC.
Kevin Fu et al. describe some ways to get it wrong and recommend a secure approach*.
Problem set 45 explores some of the issues in protecting and authenticating cookies.

Web sites use cookies in many ways. For example, many Web sites uses cookies to
track the browsing patterns of returning visitors. Users who want to protect their privacy
must disable cookie tracking in their browser.

* K. Fu, E. Sit, K. Smith, and N. Feamster, Dos and don’ts of client authentication on the Web,
Proceedings of the tenth USENIX Security Symposium, Washington, August 2001.

Saltzer & Kaashoek Ch. 11, p. 124 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–125

11.11 War Stories: Security System Breaches
A designer responsible for system security can bring to the job three different, related
assets. The first is an understanding of the fundamental security concepts discussed in
the main body of this chapter. The second is knowledge of several different real security
system designs; some examples have been discussed elsewhere in this chapter and more
can be found in the Suggestions for Further Reading. This section concentrates on
a third asset: familiarity with examples of real-world breaches of security systems. In
addition to encouraging a certain amount of humility, one can develop from these case
studies some intuition about approaches that are inherently fragile or difficult to imple
ment correctly. They also provide evidence of the impressive range of considerations that
a designer of a security system must consider.

The case studies selected for description all really happened, although inhibitions
have probably colored some of the stories. Failures can be embarrassing, have legal con
sequences, or, if publicized, jeopardize production systems that have not yet been
repaired or redesigned. For this reason, many of the cases described here were, when they
first appeared in public, sanitized by omitting certain identifying details or adding mis
leading “facts”. Years later, reconstructing the missing information is difficult, as is
distinguishing the reality from any fantasy that was added as part of the disguise. To help
separate fact from fiction, this section cites original sources wherever they are available.

The case studies start in the early 1960s, when the combination of shared computers
and durable storage first brought the need for computer security into focus. In several
examples, an anecdote describing a vulnerability discovered and a countermeasure
devised decades ago is juxtaposed with a much more recent example of essentially the
same vulnerability being again found in the field. The purpose is not to show that there
is nothing new under the sun, but rather to emphasize Santayana’s warning that “Those
who cannot remember the past are condemned to repeat it.”*

At the same time it is important to recognize that the rapid improvement of computer
hardware technology over the last 40 years has created new vulnerabilities. Technology
improvement has provided us with new case studies of security breaches in several ways:

• 	 Adversaries can bring to bear new tools. For example, performance improvements
have enabled previously infeasible attacks on security such as brute force key space
searches.

• 	 Cheap computers have increased the number of programmers much faster than
the number of security-aware programmers.

• 	 The attachment of computer systems to data communication networks has, from
the point of view of a potential adversary, vastly increased the number of potential
points of attack.

* George Santayana, The Life of Reason, Volume 1, Introduction and Reason in Common Sense (Scrib
ner's: 1905)

Saltzer & Kaashoek Ch. 11, p. 125	 June 24, 2009 12:29 am

11–126 CHAPTER 11 Information Security

• 	 Rapid technology change has encouraged giving high priority to rolling out new
features and applications, so the priority of careful attention to security suffers.

• 	 Technology improvement has enabled the creation of far more complex systems.
Complexity is a progenitor of error, and error is a frequent cause of security
vulnerabilities.

Although it is common to identify a single mistake that was the proximate cause of a
security breach, if one keeps digging it is usually possible to establish that several violations
of security principles contributed to making the breach possible, and thus to failure of
defense in depth.

11.11.1 Residues: Profitable Garbage

Security systems sometimes fail because they do not protect residues, the analyzable
remains of a program or data after the program has finished. This general attack has been
reported in many forms; adversaries have discovered secrets by reading the contents of
newly allocated primary memory, second-hand hard disks, and recycled magnetic tapes
as well as by pawing through piles of physical trash (popularly known as “dumpster
diving”).

11.11.1.1 1963: Residues in CTSS
In the M.I.T. Compatible Time-Sharing System (CTSS), a user program ran in a mem
ory region of an allocated size, and the program could request a change in allocation by
calling the operating system. If the user requested a larger allocation, the system assigned
an appropriate block of memory. Early versions of the system failed to clear the contents
of the newly allocated block, so the residue of some previous program would be accessible
to any other program that extended its memory size.

At first glance, this oversight seems to provide an attacker with the ability to read only
an uncontrollable collection of garbage, which appears hard to exploit systematically. An
industrious penetrator noticed that the system administrator ran a self-rescheduling job
every midnight that updated the primary accounting and password files. On the assump
tion that the program processed the password file by first reading it into primary
memory, the penetrator wrote a program that extended its own memory size from the
minimum to the maximum, then it searched the residue in the newly assigned area for
the penetrator’s own password. If the program found that password, it copied the entire
memory residue to a file for later analysis, expecting that it might also contain passwords
of other users. The penetrator scheduled the program to go into operation just before
midnight, and then reschedule itself every few seconds. It worked well. The penetrator
soon found in the residue a section of the file relating user names and passwords.*

Lesson: A design principle applies: use fail-safe defaults. In this case, the fail-safe default
is for the operating system memory allocator to clear the contents of newly-allocated
memory.

Saltzer & Kaashoek Ch. 11, p. 126	 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–127

11.11.1.2 1997: Residues in Network Packets
If one sends a badly formed request to a Kerberos Version 4 server (Sidebar 11.6)
describes the Kerberos authentication system), the service responds with a packet con
taining an error message. Since the error packet was shorter than the minimum frame
size, it had to be padded out to reach the minimum frame size. The problem was that the
padding region wasn’t being cleared, so it contained the residue of the previous packet
sent out by that Kerberos service. That previous packet was probably a response to a cor
rectly formed request, which typically includes both the Kerberos realm name and the
plaintext principal identifier of some authorized user. Although exposing the principal
identifier of an authorized user to an adversary is not directly a security breach, the first
step in mounting a dictionary attack (to which Kerberos is susceptible) is to obtain a
principal identifier of an active user and the exact syntax of the realm name used by this
Kerberos service*

Lesson: As in example 11.11.1.1, above, use fail-safe defaults. The packet buffer should
have been cleared between uses.

11.11.1.3 2000: Residues in HTTP
To avoid retransmitting an entire file following a transmission failure, the HyperText
Transfer Protocol (HTTP), the primary transport mechanism of the World Wide Web,
allows a client to ask a service for just a portion of a file, describing that part by a starting
address and a data length. If the requested region lies beyond the end of the file, the pro
tocol specifies that the service return just the data up to the end of the file and alert the
client about the error.

The Apple Macintosh AppleShare Internet Web service was discovered to return
exactly as much data as the client requested. When the client asked for more data than
was actually in the file, the service returned as much of the file as actually existed, fol
lowed by whatever data happened to be in the service’s primary memory following the
file. This implementation error allowed any client to mine data from the service.†

Lesson: Apparently unimportant specifications, such as “return only as much data as
is actually in the file” can sometimes be quite important.

* Reported on CTSS by Maxim G. Smith in 1963. The identical problem was found in the General
Electric GCOS system when its security was being reviewed by the U.S. Defense Department in the
1970’s, as reported by Roger R. Schell. Computer Security: the Achilles’ heel of the electronic Air
Force? Air University Review XXX, 2 (January-February 1979) page 21.

* Reported by L0pht Heavy Industries in 1997, after the system had been in production use for ten
years.

† Reported Monday 17April 2000 to an (unidentified) Apple Computer technical support mailing
list by Clint Ragsdale, followed up by analysis by Andy Griffin in Macintouch (Tuesday 18 April
2000) <http://www.macintouch.com/>.

Saltzer & Kaashoek Ch. 11, p. 127 June 24, 2009 12:29 am

<http://www.macintouch.com/>

11–128 CHAPTER 11 Information Security

11.11.1.4 Residues on Removed Disks
The potential for analysis of residues turns up in a slightly different form when a techni
cian is asked to repair or replace a storage device such as a magnetic disk. Unless the
device is cleared of data first, the technician may be able to read it. Clearing a disk is gen
erally done by overwriting it with random data, but sometimes the reason for repair is
that the write operation isn’t working. Worse, if the hardware failure is data-dependent,
it may be essential that the technician be allowed to read the residue to reproduce and
diagnose the failure.

In November 1998, the dean of the Harvard Divinity School was sacked after he
asked a University technician to upgrade his personal computer to use a new, larger hard
disk and transfer the contents of the old disk to the new one. When the technician’s
supervisor asked why the job was taking so long, the technician, after some prodding,
reluctantly replied that there seemed to be a large number of image files to transfer. That
reply led to further questions, upon which it was discovered that the image files were
pornographic.*

Lesson: Physical possession of storage media usually allows bypass of security measures
that are intended to control access within a system. The technician who removes a disk
doesn’t need a password to read it. Encryption of stored files can help minimize this
problem.

11.11.1.5 Residues in Backup Copies
It is common practice for a data-storing system to make periodic backup copies of all files
onto magnetic tape, often in several different formats. One format might allow quick
reloading of all files, while another might allow efficient searching for a single file. Several
backup copies, perhaps representing files at one-week intervals for a month, and at one-
month intervals for a year, might be kept.

The administrator of a Cambridge University time-sharing system was served with an
official government request to destroy all copies of a specific file belonging to a certain
user. The user had compiled a list of secret telephone access codes, which could be used
to place free long-distance calls. Removing the on-line file was straightforward, but the
potential cost of locating and expunging the backup copies of that file—while maintain
ing backup copies of all other files—was enormous. (A compromise was reached, in
which the backup tapes received special protection until they were due to be recycled.)†

A similar, more highly publicized backup residue incident occurred in November
1986 when Navy Vice-Admiral John M. Poindexter and Lieutenant Colonel Oliver
North deleted 5,748 e-mail messages in connection with the Iran-Contra affair. They
apparently did not realize that the PROFS e-mail system used by the National Security
Council maintained backup copies. The messages found on the backup tapes became

* James Bandler. Harvard ouster linked to porn; Divinity School dean questioned. Boston Globe
(Wednesday 19 May 1999) City Edition, page B1, Metro/Region section.

† Incident ca. 1970, reported by Roger G. Needham.

Saltzer & Kaashoek Ch. 11, p. 128 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–129

important evidence in subsequent trials of both individuals. An interesting aspect of this
case was that the later investigation focused not just on the content of specific messages,
but on their context in relation to other messages, which the backup system also pre
served.* †

Lesson: there is a tension between reliability, which calls for maintaining multiple cop
ies of data, and security, which is enhanced by minimizing extra copies.

11.11.1.6 Magnetic Residues: High-Tech Garbage Analysis
A more sophisticated version of the residue problem is encountered when recording on
continuous media such as magnetic tape or disk. If the residue is erased by overwriting,
an ordinary read to the disk will no longer return the previous data. However, analysis
of the recording medium in the laboratory may disclose residual magnetic traces of pre
viously recorded data. In addition, many disk controllers automatically redirect a write
to a spare sector when the originally addressed sector fails, leaving on the original sector
a residue that a laboratory can retrieve. For these reasons, certain U.S. Department of
Defense agencies routinely burn magnetic tapes and destroy magnetic disk surfaces in an
acid bath before discarding them. ‡

11.11.1.7 2001 and 2002: More Low-tech Garbage Analysis
The lessons about residues apparently have not yet been completely absorbed by system
designers. In July 2001, a user of the latest version of the Microsoft Visual C++ compiler
who regularly clears the unused part of his hard disk by overwriting it with a character
istic data pattern discovered copies of that pattern in binary executables created by the
compiler. Apparently the compiler allocated space on the disk as temporary storage but
did not clear that space before using it.** In January 2002, people who used the Macin
tosh operating system to create CD's for distribution were annoyed to find that most
disk-burning software, in order to provide icons for the files on the CD, simply copied
the current desktop database, which contains those icons, onto the CD. But this database
file contains icons for every application program of the user as well as incidental other
information about many of the files on the user's personal hard disks—such as the
World-Wide Web address from which they were downloaded. Thus users who received
such CD’s found that in addition to the intended files, there was a remarkable, and occa
sionally embarrassing, collection of personal information there, too.

* Lawrence E. Walsh. Final report of the independent counsel for Iran/Contra matters Volume 1, Chap
ter 3 (4 August 1993) U.S. Court of Appeals for the District of Columbia Circuit, Washington,
D.C.

† The context issue is highlighted in Armstrong v. Bush, 721 F. Supp. 343, 345 n.1 (D.D.C. 1989).

‡ Remanence Security Guidebook. Naval Staff Office Publication NAVSO P-5239-26 (September
1993:United States Naval Information Systems Management Center: Washington D.C.)

** David Winfrey. “Uncleared disk space and MSVC”. Risks Forum Digest 21, 50 (12 July 2001).

Saltzer & Kaashoek Ch. 11, p. 129 June 24, 2009 12:29 am

11–130 CHAPTER 11 Information Security

Lesson: “Visit with your predecessors… They know the ropes and can help you see
around some corners. Try to make original mistakes, rather than needlessly repeating
theirs.”*

11.11.2 Plaintext Passwords Lead to Two Breaches

Some design choices, while not directly affecting the internal security strength of a sys
tem, can affect operational aspects enough to weaken system security.

In CTSS, as already mentioned, passwords were stored in the file system together
with user names. Since this file was effectively a master user list, the system administrator,
whenever he changed the file, printed a copy for quick reference. His purpose was not to
keep track of passwords. Rather, he needed the list of user names to avoid duplication
when adding new users. This printed copy, including the passwords, was processed by
printer controller software, handled by the printer operator, placed in output bins,
moved to the system administrator’s office, and eventually discarded by his secretary
when the next version arrived. At least one penetration of CTSS was accomplished by a
student who discovered an old copy of this printed report in a wastebasket (another
example of a residue problem).†

Lesson: Pay attention to the least privilege principle: don’t store your lunch (in this case,
the names of users) in the safe with the jewels (the passwords).

At a later time, another system administrator was reviewing and updating the master
user list, using the standard text editor. The editor program, to ensure atomic update of
the file, operated by creating a copy of the original file under a temporary name, making
all changes to that copy, and at the end renaming the copy to make it the new original.
Another system operator was working at the same time as the system administrator, using
the same editor to update a different file in the same directory. The different file was the
“message of the day,” which the system automatically displayed whenever a user logged
in. The two instances of the editor used the same name for their intermediate copies,
with the result that the master user list, complete with passwords, was posted as the mes
sage of the day. Analysis revealed that the designer of the editor had, as a simplification,
chosen to use a fixed name for the editor’s intermediate copy. That simplification seemed
reasonable because the system had a restriction that prevented two different users from
working in the same directory at the same time. But in an unrelated action, someone else
on the system programming staff had decided that the restriction was inconvenient and
unnecessary, and had removed the interlock.‡

* Donald Rumsfeld, “Rumsfeld’s Rules: Advice on Government, Business, and Life”, 1974. A later
version appeared as an op-ed submission in The Wall Street Journal, 29 January 2001.

† Reported by Richard G. Mills, 1963.

‡ Fernando J. Corbató. On building systems that will fail. Communications of the ACM 34, 9 (Sep
tember, 1991) page 77. This 1966 incident led to the use of one-way transformations for stored pass
word records in Multics, the successor system to CTSS. But see item 11.11.3, which follows.

Saltzer & Kaashoek Ch. 11, p. 130 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–131

Lesson (not restricted to security): Removing interlocks can be risky because it is hard
to track down every part of the system that depended on the interlock being there.

11.11.3 The Multiply Buggy Password Transformation

Having been burned by residues and weak designs on CTSS, the architects of the Multics
system specified and implemented a (supposedly) one-way cryptographic transformation
on passwords before storing them, using the same one-way transformation on typed pass
words before comparing them with the stored version. A penetration team
mathematically examined the one-way transformation algorithm and discovered that it
wasn’t one-way after all: an inverse transformation existed.

Lesson: Amateurs should not dabble in crypto-mathematics.
To their surprise, when they tried the inverse transformation it did not work. After

much analysis, the penetration team figured out that the system procedure implementing
the supposedly one-way transformation used a mathematical library subroutine that con
tained an error, and the passwords were being transformed incorrectly. Since the error
was consistent, it did not interfere with later password comparisons, so the system per
formed password authentication correctly. Further, the erroneous algorithm turned out
to be reversible too, so the system penetration was successful.

An interesting sidelight arose when penetration team reported the error in the math
ematical subroutine and its implementers released a corrected update. Had the updated
routine simply been installed in the library, the password-transforming algorithm would
have begun working correctly. But then, correct user-supplied passwords would trans
form to values that did not match the stored values previously created using the incorrect
algorithm. Thus, no one would be able to log in. A creative solution (which the reader
may attempt to reinvent) was found for the dilemma.*

11.11.4 Controlling the Configuration

Even if one has applied a consistent set of security techniques to the hardware and soft
ware of an installation, it can be hard to be sure that they are actually effective. Many
aspects of security depend on the exact configuration of the hardware and software—that
is, the versions being used and the controlling parameter settings. Mistakes in setting up
or controlling the configuration can create an opportunity for an attacker to exploit.
Before Internet-related security attacks dominated the news, security consultants usually
advised their clients that their biggest security problem was likely to be unthinking or
unauthorized action by an authorized person. In many systems the number of people
authorized to tinker with the configuration is alarmingly large.

* Peter J. Downey. Multics Security Evaluation: Password and File Encryption Techniques. United
States Air Force Electronics Systems Division Technical Report ESD–TR–74–193, Vol. III (June
1977).

Saltzer & Kaashoek Ch. 11, p. 131 June 24, 2009 12:29 am

11–132 CHAPTER 11 Information Security

11.11.4.1 Authorized People Sometimes do Unauthorized Things
A programmer was temporarily given the privilege of modifying the kernel of a university
operating system as the most expeditious way of solving a problem. Although he properly
made the changes appropriate to solve the problem, he also added a feature to a rarely-
used metering entry of the kernel. If called with a certain argument value, the metering
entry would reset the status of the current user’s account to show no usage. This new
“feature” was used by the programmer and his friends for months afterwards to obtain
unlimited quantities of service time.*

11.11.4.2 The System Release Trick
A Department of Defense operating system was claimed to be secured well enough that
it could safely handle military classified information. A (fortunately) friendly penetration
team looked over the system and its environment and came up with a straightforward
attack. They constructed, on another similar computer, a modified version of the oper
ating system that omitted certain key security checks. They then mailed to the DoD
installation a copy of a tape containing this modified system, together with a copy of the
most recent system update letter from the operating system vendor. The staff at the site
received the letter and tape, and duly installed its contents as the standard operating sys
tem. A few days later one of the team members invited the management of the
installation to watch as he took over the operating system without the benefit of either a
user id or a password.†

Lesson: Complete mediation includes checking the authenticity, integrity, and permis
sion to install of software releases, whether they arrive in the mail or are downloaded over
the Internet.

11.11.4.3 The Slammer Worm‡

A malware program that copies itself from one computer to another over a network is
known as a “worm”. In January 2003 an unusually virulent worm named Slammer
struck, demonstrating the remarkable ease with which an attacker might paralyze the
otherwise robust Internet. Slammer did not quite succeed because it happened to pick
on an occasionally used interface that is not essential to the core operation of the Inter
net. If Slammer had found a target in a really popular interface, the Internet would have

* Reported by Richard G. Mills, 1965.

† This story has been in the folklore of security for at least 25 years, but it may be apocryphal. A
similar tale is told of mailing a a bogus field change order, which would typically apply to the hard
ware, rather than the software, of a system. The folklore is probably based on a 1974 analysis of oper
ating practices of United States Defense contractors and Defense Department sites that outlined this
attack possibility in detail and suggested strongly that mailing a bogus software update would almost
certainly result in its being installed at the target site. The authors never actually tried the attack.
Paul A. Karger and Roger R. Schell. MULTICS Security Evaluation: Vulnerability Analysis. United
States Air Force Electronics Systems Division Technical Report ESD–TR–74–193 Vol. II (June
1974), Section 3.4.5.1.

Saltzer & Kaashoek Ch. 11, p. 132 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–133

locked up before anyone could do anything about it, and getting things back to even a
semblance of normal operation would probably have taken a long time.

The basic principle of operation of Slammer was stunningly simple:

1. Discover an Internet port that is enabled in many network-attached computers,
and for which a popular listener implementation has a buffer overrun bug that a
single, short packet can trigger. Internet Protocol UDP ports are thus a target of
choice. Slammer exploited a bug in Microsoft SQL Server 2000 and Microsoft
Server Desktop Engine 2000, both of which enable the SQL UDP port. This port
is used for database queries, and it is vulnerable only on computers that run one
of these database packages, so it is by no means universal.

2. Send to that port a packet that overruns a buffer, captures the execution point of
the processor, and runs a program contained in the packet.

3. Write that program to go into a tight loop, generating an Internet address at
random and sending a copy of the same packet to that address, as fast as possible.
The smaller the packet, the more packets per second the program can launch.
Slammer used packets that were, with headers, 404 bytes long, so a broadband-
connected (1 megabit/second) machine could launch packets at a rate of
300/second, a machine with a 10 megabits/second path to the Internet could
launch packets at a rate of 3,000/second and a high-powered server with a 155
megabits/second connection might be able to launch as many as 45,000
packets/second.

Forensics: Receipt of this single Slammer worm packet is enough to instantly recruit
the target to help propagate the attack to other vulnerable systems. An interesting foren
sic problem is that recruitment modifies no files and leaves few traces because the worm
exists only in volatile memory. If a suspicious analyst stops a recruited machine, discon
nects it from the Internet, and reboots it, the analyst will find nothing. There may be
some counters indicating that there was a lot of outbound network traffic, but no clue
why. So one remarkable feature of this kind of worm is the potential difficulty of tracing
its source. The only forensic information available is likely to be the payload of the inten
tionally tiny worm packet.

Exponential attack rate: A second interesting observation about the Slammer worm is
how rapidly it increased its aggregate rate of attack. It recruited every vulnerable com
puter on the Internet as both a prolific propagator and also as an intense source of
Internet traffic. The original launcher needed merely to find one vulnerable machine
anywhere in the Internet and send it a single worm packet. This newly-recruited target
immediately began sending copies of the worm packet to other addresses chosen at ran
dom. Internet version 4, with its 32-bit address fields, provided about 4 billion addresses,

‡ This account is based on one originally published under the title “Slammer: an urgent wake-up
call”, pages 243–248 in Computer Systems: theory, technology and applications/A tribute to Roger
Needham, Andrew Herbert & Karen Spärck Jones, editors. (Springer: New York: 2004)

Saltzer & Kaashoek Ch. 11, p. 133 June 24, 2009 12:29 am

11–134 CHAPTER 11 Information Security

and even though many of them were unassigned, sooner or later one of these worm pack
ets was likely to hit another machine with the same vulnerability. The worm packet
immediately recruited this second machine to help with the attack. The expected time
until a worm packet hit yet another vulnerable machine dropped in half and the volume
of attack traffic doubled. Soon third and fourth machines were recruited to join the
attack; thus the expected time to find new recruits halved again and the malevolent traffic
rate doubled again. This epidemic process proceeded with exponential growth until
either a shortage of new, vulnerable targets or bottlenecked network links slowed it
down; the worm quickly recruited every vulnerable machine attached to the Internet.

The exponent of growth depends on the average time it takes to recruit the next target
machine, which in turn depends on two things: the number of vulnerable targets and the
rate of packet generation. From the observed rate of packet arrivals at the peak, a rough
estimate is that there were 50 thousand or more recruits, launching at least 50 million
packets per second into the Internet. The aggregate extra load on the Internet of these
3200-bit packets probably amounted to something over 150 Gigabits/second, but that
is well below the aggregate capacity of the Internet, so reported disruptions were localized
rather than universal.

With 50 thousand vulnerable ports scattered through a space of 4 billion addresses,
the chance that any single packet hits a vulnerable port is one in 120 thousand. If the
first recruit sends one thousand packets per second, the expected time to hit a vulnerable
port would be about two minutes. In four minutes there would be four recruits. In six
minutes, eight recruits. In half an hour, nearly all of the 50 thousand vulnerable
machines would probably be participating.

Extrapolation: The real problem appears if we redo that analysis for a port to which
five million vulnerable computers listen: the time scale drops by two orders of magni
tude. With that many listeners, a second recruit would receive the worm and join the
attack within one second, two more one second later, etc. In less than 30 seconds, most
of the 5 million machines would be participating, each launching traffic onto the Inter
net at the fastest rate they (or their Internet connection) can sustain. This level of attack,
about two orders of magnitude greater than the intensity of Slammer, would almost cer
tainly paralyze every corner of the Internet. It could take quite a while to untangle
because the overload of every router and link would hamper communication among peo
ple who are trying to resolve the problem. In particular, it could be difficult for owners
of vulnerable machines to learn about and download any necessary patches.

Prior art: Slammer used a port that is not widely enabled, yet its recruitment rate,
which determines its exponential growth rate, was at least one and perhaps two orders of
magnitude faster than that reported for previous generations of fast-propagating worms.
Those worms attacked much more widely-enabled ports, but they took longer to prop
agate because they used complex multipacket protocols that took much longer to set up.
The Slammer attack demonstrates the power of brute force. By choosing a UDP port,
infection can be accomplished by a single packet, so there is no need for a time-consum
ing protocol interchange. The smaller the packet size, the faster a recruit can then launch
packets to discover other vulnerable ports.

Saltzer & Kaashoek Ch. 11, p. 134 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–135

Another risk: The worm also revealed a risk of networks that advertise a large number
of addresses. At the time that individual computers that advertise a single address were
receiving one Slammer worm packet every 80 seconds, a network that advertises 16 mil
lion addresses would have been receiving 200,000 packets/second, with a data rate of
about 640 megabits/second. In confirmation, incoming traffic to the M.I.T. network
border routers, which actually do advertise 16 million addresses, peaked at a measured
rate of around 500 megabits/second with some of its links to the public Internet satu
rated. Being the home of 16 million Internet addresses has its hazards.

Lessons: From this incident we can draw different lessons for different network partic
ipants: For users, the perennial but often-ignored advice to disable unused network ports
does more than help a single computer resist attack, it helps protect the entire network.
For vendors, shipping an operating system that by default activates a listener for a feature
that the user does not explicitly request is hazardous to the health of the network (use fail-
safe defaults). For implementers, it emphasizes the importance of diligent care (and para
noid design) in network listener implementations, especially on widely activated UDP
ports.*

11.11.5 The Kernel Trusts the User

11.11.5.1 Obvious Trust
In the first version of CTSS, a shortcut was taken in the design of the kernel entry that
permitted a user to read a large directory as a series of small reads. Rather than remem
bering the current read cursor in a system-protected region, as part of each read call the
kernel returned the cursor value to the caller. The caller was to provide that cursor as an
argument when calling for the next record. A curious user printed out the cursor, con
cluded that it looked like a disk sector address, and wrote a program that specified sector
zero, a starting block that contained the sector address of key system files. From there he
was able to find his way to the master user table containing (as already mentioned, plain
text) passwords.†

Although this vulnerability seems obvious, many operating systems have been discov
ered to leave some critical piece of data in an unprotected user area, and later rely on its
integrity. In OS/360, the operating system for the IBM System/360, each system module
was allocated a limited quota of system-protected storage, as a strategy to keep the system
small. Since the quota was unrealistically small in many cases, system programmers were
effectively forced to place system data in unprotected user areas. Despite many later
efforts to repair the situation, an acceptable level of security was never achieved in that
system.‡

Lesson: A bit more attention to paranoid design would have avoided these problems.

* A detailed analysis of the Slammer worm and its effects on the Internet can be found in David
Moore, et al., “Inside the Slammer Worm”, IEEE Security and Privacy 1, 4 (July 2003) pages 33 - 39.

† Noticed by the author, exploit developed by Maxim G. Smith, 1963.

Saltzer & Kaashoek Ch. 11, p. 135 June 24, 2009 12:29 am

11–136 CHAPTER 11 Information Security

11.11.5.2 Nonobvious Trust (Tocttou)
As a subtle variation of the previous problem, consider the following user-callable kernel
entry point:

1 procedure DELETE_FILE (file_name)

2 auth ← CHECK_DELETE_PERMISSION (file_name, this_user_id)

3 if auth = PERMITTED

4 then DESTROY (file_name)
5 else signal (“You do not have permission to delete file_name”)

This program seems to be correctly checking to verify that the current user (whose iden
tity is found in the global variable this_user_id) has permission to delete file file_name.
But, because the code depends on the meaning of file_name not changing between the
call to CHECK_DELETE_PERMISSION on line 2 and the call to DESTROY on line 4, in some sys
tems there is a way to defeat the check.

Suppose that the system design uses indirection to decouple the name of a file from
its permissions (as for example, in the UNIX file system, which stores its permissions in
the inode, as described in Section 2.5.7). With such a design, the user can, in a concur
rent thread, unlink and then relink the name file_name to a different file, thereby causing
deletion of some other file that CHECK_DELETE_PERMISSION would not have permitted.
There is, of course a race—the user’s concurrent thread must perform the unlinking and
relinking in the brief interval between when CHECK_DELETE_PERMISSION looks up filename

in the file system and DESTROY looks up that same name again. Nevertheless, a window of
opportunity does exist, and a clever adversary may also be able to find a way to stretch
out the window.

This class of error is so common in kernel implementations that it has a name: “Time
Of Check To Time Of Use” error, written “tocttou” and pronounced “tock-two”.*

Lesson: For complete mediation to be effective, one must also consider the dynamics of
the system. If the user can change something after the guard checks for authenticity,
integrity, and permission, all bets are off.

11.11.5.3 Tocttou 2:Virtualizing the DMA Channel.
A common architecture for Direct Memory Access (DMA) input/output channel pro
cessors is the following: DMA channel programs refer to absolute memory addresses
without any hardware protection. In addition, these channel programs may be able to
modify themselves by reading data in over themselves. If the operating system permits
the user to create and run DMA channel programs, it becomes difficult to enforce secu
rity constraints, and even more difficult for an operating system to create virtual DMA

‡ Allocation strategy reported by Fred Brooks in The Mythical Man-Month.[Suggestions for Fur
ther Reading 1.1.3

* Richard Bisbey II, Gerald Popek, and Jim Carlstedt. Protection errors in operating systems: inconsis
tency of a single data value over time. USC/Information Sciences Institute Technical Report SR–75–4
(January 1976).

Saltzer & Kaashoek Ch. 11, p. 136 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–137

channels as part of a virtual machine implementation. Even if the channel programs are
reviewed by the operating system to make sure that all memory addresses refer to areas
assigned to the user who supplied the channel program, if the channel program is self-
modifying, the checks of its original content are meaningless. Some system designers try
to deal with this problem by enforcing a prohibition on timing-dependent and self-mod
ifying DMA channel programs. The problem with this approach was that it is difficult
to methodically establish by inspection that a program conforms with the prohibition.
The result is a battle of wits: for every ingenious technique developed to discover that a
DMA channel program contains an obscure self-modification feature, some clever adver
sary may discover a still more obscure way to conceal self-modification. Precisely such a
problem was noted with virtualization of I/O channels in the IBM System/360 architec
ture and its successors.*

Lesson: It can be a major challenge to apply complete mediation to a legacy hardware
architecture.

11.11.6 Technology Defeats Economic Barriers

11.11.6.1 An Attack on Our System Would be Too Expensive
A Western Union vice-president, when asked if the company was using encryption to
protect the privacy of messages sent via geostationary satellites, dismissed the question by
saying, “Our satellite ground stations cost millions of dollars apiece. Eavesdroppers don’t
have that kind of money.”† This response seems oblivious of two things: (1) an eaves
dropper may be able to accomplish the job with relatively inexpensive equipment that
does not have to meet commercial standards of availability, reliability, durability, main
tainability, compatibility, and noise immunity, and (2) improvements in technology can
rapidly reduce an eavesdropper’s cost. The next anecdote provides an example of the sec
ond concern.

Lesson: Never underestimate the effect of technology improvement, and the effective
ness of the resources that a clever adversary may bring to bear.

11.11.6.2 Well, it Used to be Too Expensive
In 2003, the University of Texas and Georgia Tech were victims of an attack made pos
sible by advancing computer and network technology. The setup went as follows: The
database of student, staff, and alumni records included in each record a field containing
that person’s Social Security number. Furthermore, the Social Security number field was

* This battle of wits is well known to people who have found themselves trying to “virtualize” exist
ing computer architectures, but apparently the only specific example that has been documented is
in C[lement]. R[ichard]. Attanasio, P[eter] W. Markstein and R[ay]. J. Philips, “Penetrating an
operating system: a study of VM/370 integrity,” IBM System Journal 15, 1 (1976), pages 102–117.

† Reported by F. J. Corbató, ca. 1975.

Saltzer & Kaashoek Ch. 11, p. 137 June 24, 2009 12:29 am

11–138 CHAPTER 11 Information Security

a key field, which means that it could be used to retrieve records. The assumption was
that this feature was useful only to a client who knew a Social Security number.

The attackers realized that the universities had a high-performance database service
attached to a high-bandwidth network, and it was therefore possible to systematically try
all of the 999 million possible Social Security numbers in a reasonably short time—in
other words, a dictionary attack. Most trials resulted in a “no such record” response, but
each time an offered Social Security number happened to match a record in the database,
the service returned the entire record for that person, thereby allowing the Social Security
number to be matched with a name, address, and other personal information.

The attacks were detected only when it was noticed that the service seemed to be
experiencing an unusually heavy load.*

Lesson: As technology improves, so do the tools available for adversaries.

11.11.7 Mere Mortals Must be Able to Figure Out How to Use it

In an experiment at Carnegie-Mellon University, Alma Whitten and Doug Tygar
engaged twelve subjects who were experienced users of e-mail, but who had not previ
ously tried to send secure e-mail. The task for these subjects was to figure out how to send
a signed and encrypted message, and decrypt and authenticate the response, within 90
minutes. They were to use the cryptographic package Pretty Good Privacy (PGP)
together with the Eudora e-mail system, both of which were already installed and con
figured to work together.

Of the twelve participants, four succeeded in sending the message correctly secured;
three others sent the message in plaintext thinking that it was secure, and the remaining
five never figured out how to complete the task. The report on this project provides a
step-by-step analysis of the mistakes and misconceptions encountered by each of the
twelve test subjects. It also includes a cognitive walkthrough analysis (that is, an a priori
review) of the user interface of PGP.†

Lessons:

1. 	The mental model that a person needs to make correct use of public-key
cryptography is hard for a non-expert to grasp; a simpler description is needed.

2. 	Any undetected mistake can compromise even the best security. Yet it is well
known that it requires much subtlety to design a user interface that minimizes
mistakes. The principle of least astonishment applies.

* Robert Lemos. “Data thieves nab 55,000 student records” CNET News.com, March 6, 2003. Rob
ert Lemos. “Data thieves strike Georgia Tech” CNET News.com, March 31, 2003.

† Alma Whitten and J. D. Tygar. Usability of Security: A Case Study. Carnegie-Mellon University
School of Computer Science Technical Report CMU–CS–98–155, December 1998. A less detailed
version appeared in Why Johnny Can’t Encrypt: A Usability Evaluation of PGP 5.0. Proceedings of
the eighth USENIX security symposium, August 1999.

Saltzer & Kaashoek Ch. 11, p. 138	 June 24, 2009 12:29 am

http:News.com
http:News.com

11.11 War Stories: Security System Breaches 11–139

11.11.8 The Web can be a Dangerous Place

In the race to create the World Wide Web browser with the most useful features, security
sometimes gets overlooked. One potentially useful feature is to launch the appropriate
application program (called a helper) after downloading a file that is in a format not han
dled directly by the browser. However, launching an application program to act on a file
whose contents are specified by someone else can be dangerous.

Cognizant of this problem, the Microsoft browser, named Internet Explorer, main
tained a list of file types, the corresponding applications, and a flag for each that indicates
whether or not launching should be automatic or the user should be asked first. When
initially installed, Internet Explorer came with a pre-configured list, containing popular
file types and popular application programs. Some flags were preset to allow automatic
launch, indicating that the designer believed certain applications could not possibly
cause any harm.

Apparently, it is harder than it looks to make such decisions. So far, three different
file types whose default flags allow automatic launch have been identified as exploitable
security holes on at least some client systems:

• 	 Files of type “.LNK”, which in Windows terminology are called “shortcuts” and
are known elsewhere as symbolic links. Downloading one of these files causes the
browser to install a symbolic link in the client’s file system. If the internals of the
link indicate a program at the other end of the link, the browser then attempts to
launch that program, giving it arguments found in the link.

• 	 Files of type “.URL”, known as “Internet shortcuts”, which contain a URL. The
browser simply loads this URL, which would seem to be a relatively harmless thing
to do. But a URL can be a pointer to a local file, in which case the browser does
not apply security restrictions (for example, in running scripts in that file) that it
would normally apply to files that came from elsewhere.

• 	 Files of type “.ISP”, which are intended to contain scripts used to set up an account
with an Information Service Provider. Since the script interpreter was an
undocumented Microsoft-provided application, deciding that a script cannot
cause any harm was not particularly easy. Searching the binary representation of
the program for character strings revealed a list of script keywords, one of which
was “RUN”. A little experimenting revealed that the application that interprets
this keyword invokes the operating system to run whatever command line follows
the RUN key word.

The first two of these file types are relatively hard to exploit because they operate by
running a program already stored somewhere on the client’s computer. A prospective
attacker would have to either guess the location of an existing, exploitable application
program or surreptitiously install a file in a known location. Both of these courses are,
however, easier than they sound. Most system installations follow a standard pattern,
which means that vendor-supplied command programs are stored in standard places

Saltzer & Kaashoek Ch. 11, p. 139	 June 24, 2009 12:29 am

11–140 CHAPTER 11 Information Security

with standard names, and many of those command programs can be exploited by passing
them appropriate arguments. By judicious use of comments and other syntactic tricks
one can create a file that can be interpreted either as a harmless HTML Web page or as
a command script. If the client reads such an HTML Web page, the browser places a
copy in its Web cache, where it can then be exploited as a command script, using either
the .LNK or .URL type.

Lesson: The fact that these security problems were not discovered before product
release suggests that competitive pressures can easily dominate concern for security. One
would expect that even a somewhat superficial security inspection would have quickly
revealed each of these problems. Failure to adhere to the principle of open design is also
probably implicated in this incident. Finally, the principle of least privilege suggests that
automatically launched programs that could be under control of an adversary should be
run in a distinct virtual machine, the computer equivalent of a padded cell, where they
can’t do much damage.*

11.11.9 The Reused Password

A large corporation arranged to obtain network-accessible computing services from two
competing outside suppliers. Employees of the corporation had individual accounts with
each supplier.

Supplier A was quite careful about security. Among other things, it did not permit
users to choose their own passwords. Instead, it assigned a randomly-chosen password to
each new user. Supplier B was much more relaxed—users could choose their own pass
words for that system. The corporation that had contracted for the two services
recognized the difference in security standards and instructed its employees not to store
any company confidential or proprietary information on supplier B's more loosely man
aged system.

In keeping with their more relaxed approach to security, a system programmer for
supplier B had the privilege of reading the file of passwords of users of that system.
Knowing that this customer's staff also used services of supplier A, he guessed that some
of them were probably lazy and had chosen as their password on system B the same pass
word that they had been assigned by supplier A. He proceeded to log in to system A
successfully, where he found a proprietary program of some interest and copied it back
to his own system. He was discovered when he tried to sell a modified version of the pro
gram, and employees of the large corporation became suspicious.†

Lesson: People aren’t good at keeping secrets.

* Chris Rioux provided details on this collection of browser problems, and discovered the .ISP
exploitation, in 1998.

† This anecdote was reported in the 1970’s, but its source has been lost.

Saltzer & Kaashoek Ch. 11, p. 140 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–141

11.11.10 Signaling with Clandestine Channels

11.11.10.1 Intentionally I: Banging on the Walls
Once information has been released to a program, it is difficult to be sure that the pro
gram does not pass the information along to someone else. Even though non
discretionary controls may be in place, a program written by an adversary may still be
able to signal to a conspirator outside the controlled region by using a clandestine chan
nel. In an experiment with a virtual memory system that provides shared library
procedures, an otherwise confined program used the following signalling technique: For
the first bit of the message to be transmitted, it touched (if the bit value was ONE) or failed
to touch (if the bit value was ZERO) a previously agreed-upon page of a large, infrequently
used, shared library program. It then waited a while, and repeated the procedure for the
second bit of the message. A receiving thread observed the presence of the agreed-upon
page in memory by measuring the time required to read from a location in that page. A
short (microsecond) time meant that the page was already in memory and a ONE value
was recorded for that bit. Using an array of pages to send multiple bits, interspersed with
pauses long enough to allow the kernel to page out the entire array, a data rate of about
one bit per second was attained.* This technique of transmitting data by an otherwise
confined program is known as “banging on the walls”.

In 2005, Colin Percival noticed that when two processors share a cache, as do certain
chips that contain multiple processors, this same technique can be used to transmit infor
mation at much higher rate. Percival estimates that the L1 cache of a 2.8 gigahertz
Pentium 4 could be used to transmit data upwards of 400 kilobytes per second†.

Lesson: Minimize common mechanisms. A common mechanism such as a shared vir
tual memory or a shared cache can provide an unintended communication path.

11.11.10.2 Intentionally II
In an interesting 1998 paper,‡ Marcus Kuhn and Ross Anderson describe how easy it is
to write programs that surreptitiously transmit data to a nearby, cheap, radio receiver by
careful choice of the patterns of pixels appearing on the computer’s display screen. A dis
play screen radiates energy in the form of radio waves whose shape depends on the
particular pattern on the screen. They also discuss how to design fonts to minimize the
ability for an adversary to interpret this unwanted radiation.

Lesson: Paranoid design requires considering all access paths.

* Demonstrated by Robert E. Mullen ca. 1976, described by Tom Van Vleck in a poster session at
the IEEE Symposium on Research in Security and Privacy, Oakland, California, May 1990. The
description is posted on the Multics Web site, at <www.multicians.org/thvv/timing-chn.html>.

† C. Percival, Cache missing for fun and profit. Proceedings of BSDCAN 2005, Ottawa.
http://www.deamonology.net/papers/htt.pdf (May 2005).

‡ Markus G. Kuhn and Ross J. Anderson. Soft Tempest: Hidden Data Transmission Using Electro
magnetic Emanations. In David Aucsmith (Ed.): Information Hiding 1998, Lecture Notes in Com
puter Science 1525, pages 124–142 (1998: Springer-Verlag: Berlin and Heidelberg).

Saltzer & Kaashoek Ch. 11, p. 141 June 24, 2009 12:29 am

http://www.deamonology.net/papers/htt.pdf

11–142 CHAPTER 11 Information Security

11.11.10.3 Unintentionally
If an operating system is trying to avoid releasing a piece of information, it may still be
possible to infer its value from externally observed behavior, such as the time it takes for
the kernel to execute a system call or the pattern of pages in virtual memory after the ker
nel returns. An example of this attack was discovered in the Tenex time-sharing system,
which provided virtual memory. Tenex allowed a program to acquire the privileges of
another user if the program could supply that user’s secret password. The kernel routine
that examined the user-supplied password did so by comparing it, one character at a
time, with the corresponding entry in the password table. As soon as a mismatch was
detected, the password-checking routine terminated and returned, reporting a mismatch
error.

This immediate termination turned out to be easily detectable by using two features
of Tenex. The first feature was that the system reacted to an attempt to touch a nonex
istent page by helpfully creating an empty page. The second feature was that the user can
ask the kernel if a given page exists. In addition, the user-supplied password can be placed
anywhere in user memory.

An attacker can place the first character of a password guess in the last byte of the last
existing page, and then call the kernel asking for another user’s privileges. When the ker
nel reports a password mismatch error, the attacker then can check to see whether or not
the next page now exists. If so, the attacker concludes that the kernel touched the next
page to look for the next byte of the password, which in turn implies that the first char
acter of the password was guessed correctly. By cycling through the letters of the
alphabet, watching for one that causes the system to create the next page, the attacker
could systematically search for the first character of the password. Then, the attacker
could move the password down in memory one character position and start a similar
search for the second character. Continuing in this fashion, the entire password could be
quickly exposed with an effort proportional to the length of the password rather than to
the number of possible passwords.*

Lesson: We have here another example of a common mechanism, the virtual memory
shared between the user and the password checker inside the supervisor. Common mech
anisms can provide unintended communication paths.

11.11.11 It Seems to be Working Just Fine

A hazard with systems that are supposed to provide security is that there often is no obvi
ous indication that they aren’t actually doing their job. This hazard is especially acute in
cryptographic systems.

* This attack (apparently never actually exploited in the field before it was blocked) has been con
firmed by Ray Tomlinson and Dan Murphy, the designers of Tenex. A slightly different description
of the attack appears in Butler Lampson, “Hints for computer system design,” Operating Systems
Review 17, 5 (October 1983) pages 35–36.

Saltzer & Kaashoek Ch. 11, p. 142 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–143

11.11.11.1 I Thought it was Secure
The Data Encryption Standard (DES) is a block cryptographic system that transforms
each 64-bit plaintext input block into a 64-bit output ciphertext block under what
appears to be a 64-bit key. Actually, the eighth bit of each key byte is a parity check on
the other seven bits, so there are only 56 distinct key bits.

One of the many software implementations of DES works as follows. One first loads
a key, say my_key, by invoking the entry

status ← LOAD_KEY (my_key)

The LOAD_KEY procedure first resets all the temporary variables of the cryptographic
software, to prevent any interaction between successive uses. Then, it checks its argu
ment value to verify that the parity bits of the key to be loaded are correct. If the parity
does not check, LOAD_KEY returns a non-zero status. If the status argument indicates that
the key loaded properly, the application program can go on to perform other operations.
For example, a cryptographic transformation can be performed by invoking

ciphertext ← ENCRYPT (plaintext)

for each 64-bit block to be transformed. To apply the inverse transformation, the appli
cation invokes LOAD_KEY with the same key value that was used for encryption and then
executes

plaintext ← DECRYPT (ciphertext)

A network application used this DES implementation to encrypt messages. The client
and the service agreed in advance on a key (the “permanent key”). To avoid exposing the
permanent key by overuse, the first step in each session of the client/service protocol was
for the client to randomly choose a temporary key to be used in this session, encipher it
with the permanent key, and send the result to the service. The service decrypted the first
block using the permanent key to obtain the temporary session key, and then both ends
used the session key to encrypt and decrypt the streams of data exchanged for rest of that
session.

The same programmer implemented the key exchange and loading program for both
the client and the service. Not realizing that the DES key was structured as 56 bits of key
with 8 parity bits, he wrote the program to simply use a random number generator to
produce a 64-bit session key. In addition, not understanding the full implications of the
status code returned by LOAD_KEY, he wrote the call to that program as follows (in the C
language):

LOAD_KEY (tempkey)

thereby ignoring the returned status value.
Everything seemed to work properly. The client generated a random session key, enci
phered it, and sent it to the service. The service deciphered it, and then both the client
and the service loaded the session key. But in 255 times out of 256, the parity bits of the
session key did not check, and the cryptographic software did not load the key. With this
particular implementation, failing to load a key after state initialization caused the pro-

Saltzer & Kaashoek Ch. 11, p. 143 June 24, 2009 12:29 am

11–144 CHAPTER 11 Information Security

gram to perform the identity transformation. Consequently, in most sessions all the data
of the session was actually transmitted across the network in the clear.*

Lesson: The programmer who ignored the returned status value was not sufficiently
paranoid in the implementation. Also, the designer of LOAD_KEY, in implementing an
encryption engine that performs the identity transformation when it is in the reset state
did not apply the principle of fail-safe defaults,. That designer also did not apply the prin
ciple to be explicit; the documentation of the package could have included a warning
printed in large type of the importance of checking the returned status values.

11.11.11.2 How Large is the Key Space…Really?
When a client presents a Kerberos ticket to a service (see Sidebar 11.6 for a brief descrip
tion of the Kerberos authentication system), the service obtains a relatively reliable
certification that the client is who it claims to be. Kerberos includes in the ticket a newly-
minted session key known only to it, the service, and the client. This new key is for use
in continued interactions between this service and client, for example to encrypt the
communication channel or to authenticate later messages.

Generating an unpredictable session key involves choosing a number at random from
the 56-bit Data Encryption Standard key space. Since computers aren’t good at doing
things at random, generating a genuinely unpredictable key is quite difficult. This prob
lem has been the downfall of many cryptographic systems. Recognizing the difficulty, the
designers of Kerberos in 1986 chose to defer the design of a high-quality key generator
until after they had worked out the design of the rest of the authentication system. As a
placeholder, they implemented a temporary key generator which simply used the time of
day as the initial seed for a pseudorandom-number generator. Since the time of day was
measured in units of microseconds, using it as a starting point introduced enough unpre
dictability in the resulting key for testing.

When the public release of Kerberos was scheduled three years later, the project to
design a good key generator bubbled to the top of the project list. A fairly good, hard-to
predict key generator was designed, implemented, and installed in the library. But,
because Kerberos was already in trial use and the new key generator was not yet field-
tested, modification of Kerberos to use the new key generator was deferred until experi
ence with it and confidence in it could be accumulated.

In February of 1996, some 7 years later, two graduate students at Purdue University
learned of a security problem attributed to a predictable key generator in a different net
work authentication system. They decided to see if they could attack the key generator
in Kerberos. When they examined the code they discovered that the temporary, time-of
day key generator had never been replaced, and that it was possible to exhaustively search
its rather limited key space with a contemporary computer in just a few seconds. Upon
hearing this report, the maintainers of Kerberos were able to resecure Kerberos quickly

* Reported by Theodore T’so in 1997.

Saltzer & Kaashoek Ch. 11, p. 144 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–145

because the more sophisticated key-generator program was already in its library and only
the key distribution center had to be modified to use the library program.

Lesson: This incident illustrates how difficult it is to verify proper operation of a func
tion with negative specifications. From all appearances, the system with the predictable
key generator was operating properly.*

11.11.11.3 How Long are the Keys?
A World Wide Web service can be configured, using the Secure Socket Layer, to apply
either weak (40-bit key) or strong (128-bit key) cryptographic transformations in
authenticating and encrypting communication with its clients. The Wells Fargo Bank
sent the following letter to on-line customers in October, 1999:

“We have, from our initial introduction of Internet access to retirement account
information nearly two years ago, recognized the value of requiring users to utilize brows
ers that support the strong, 128-bit encryption available in the United States and
Canada. Following recent testing of an upgrade to our Internet service, we discovered
that the site had been put into general use allowing access with standard 40-bit encryp
tion. We fixed the problem as soon as it was discovered, and now, access is again only
available using 128-bit encryption…We have carefully checked our Internet service and
computer files and determined that at no time was the site accessed without proper
authorization…”†

Some Web browsers display an indication, such as a padlock icon, that encryption is
in use, but they give no clue about the size of the keys actually being used. As a result, a
mistake such as this one will likely go unnoticed.

Lesson: The same as for the preceding anecdote 11.11.11.2.

11.11.12 Injection For Fun and Profit

A common way of attacking a system that is not well defended is to place control infor
mation in a typed input field, a method known as “injection”. The programmer of the
system provides an empty space, for example on a Web form, in which the user is sup
posed to type something such as a user name or an e-mail address. The adversary types
in that space a string of characters that, in addition to providing the requested informa
tion, invokes some control feature. The typical mistake is that the program that reads the
input field simply passes the typed string along to some potentially powerful interpreter
without first checking the string to make sure that it doesn’t contain escape characters,
control characters, or even entire program fragments. The interpreter may be anything
from a human operator to a database management system, and the result can be that the
adversary gains unauthorized control of some aspect of the system.

* Jared Sandberg, with contribution by Don Clark. Major flaw in Internet security system is dis
covered by two Purdue students. Wall Street Journal CCXXVII, 35 (Tuesday 20 February 1996),
Eastern Edition page B–7A.

† Jeremy Epstein. Risks-Forum Digest 20, 64 (Thursday 4 November 1999).

Saltzer & Kaashoek Ch. 11, p. 145 June 24, 2009 12:29 am

11–146 CHAPTER 11 Information Security

The countermeasure for injection is known as “sanitizing the input”. In principle,
santizing is simple: scan all input strings and delete inappropriate syntactical structures
before passing them along. In practice, it it is sometimes quite challenging to distinguish
acceptable strings from dangerous ones.

11.11.12.1 Injecting a Bogus Alert Message to the Operator
Some early time-sharing systems had a feature that allowed a logged-in user to send a
message to the system operator, for example, to ask for a tape to be mounted. This mes
sage is displayed at the operator’s terminal, intermixed with other messages from the
operating system. The operating system normally displays a warning banner ahead of
each user message so that the operator knows its source. In the Compatible Time Sharing
System at M.I.T., the operating system placed no constraint on either the length or con
tent of messages from users. A user could therefore send a single message that, first,
cleared the display screen to eliminate the warning banner, and then displayed what
looked like a standard system alert message, such as a warning that the system was over
heating, which would lead the operator to immediately shut down the system.*

11.11.12.2 CardSystems Exposes 40,000,000 Credit Card Records to SQL Injection
A currently popular injection attack is known as “SQL injection”. Structured Query
Language (SQL) is a widely-implemented language for making queries of a database sys
tem. A typical use is that a Web form asks for a user name, and the program that receives
the form inserts the typed string in place of typedname in an SQL statement such as this
one:

select * from USERS where NAME = ‘typedname’;

This SQL statement finds the record in the USERS table that has a NAME field equal to the
value of the string that replaced typedname. Thus, if the user types “John Doe” in the
space on the Web form, the SQL statement will look for and return the record for user
John Doe.
Now, suppose that an adversary types the following string in the blank provided for the
name field:

John Doe’ ; drop USERS;

When that string replaces typedname, the result is to pass this input to the SQL
interpreter:

select * from USERS where NAME = ‘John Doe’ ; drop USERS;’;

The SQL interpreter considers that input to be three statements, separated by semico
lons. The first statement returns the record corresponding to the name “John Doe”. The
second statement deletes the USERS table. The third statement consists of a single quote,

* This vulnerability was noticed, and corrected, by staff programmers in the late 1960’s. As far as is
known, it was never actually exploited.

Saltzer & Kaashoek Ch. 11, p. 146 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–147

which the interpreter probably treats as a syntax error, but the damage intended by the
adversary has been done. The same scheme can be used to inject much more elaborate
SQL code, as in the following incident, described by excerpts from published accounts.

Excerpt from wired.com, June 22, 2005: “MasterCard International announced last
Friday that intruders had accessed the data from CardSystems Solutions, a payment pro
cessing company based in Arizona, after placing a malicious script on the company's
network.”* The New York Times reported that “…more than 40 million credit card
accounts were exposed; data from about 200,000 accounts from MasterCard, Visa and
other card issuers are known to have been stolen…”†

Excerpt from the testimony of the Chief Executive Officer of CardSystems Solutions
before a Congressional committee: “An unauthorized script extracted data from 239,000
unique account numbers and exported it by FTP…”‡

Excerpt from the FTC complaint, filed a year later: “6. Respondent has engaged in a
number of practices that, taken together, failed to provide reasonable and appropriate
security for personal information stored on its computer network. Among other things,
respondent: (1) created unnecessary risks to the information by storing it in a vulnerable
format for up to 30 days; (2) did not adequately assess the vulnerability of its Web appli
cation and computer network to commonly known or reasonably foreseeable attacks,
including but not limited to “Structured Query Language” (or “SQL”) injection attacks;
(3) did not implement simple, low-cost, and readily available defenses to such attacks;
(4) failed to use strong passwords to prevent a hacker from gaining control over comput
ers on its computer network and access to personal information stored on the network;
(5) did not use readily available security measures to limit access between computers on
its network and between such computers and the Internet; and (6) failed to employ suf
ficient measures to detect unauthorized access to personal information or to conduct
security investigations.

“7. In September 2004, a hacker exploited the failures set forth in Paragraph 6 by
using an SQL injection attack on respondent’s Web application and Web site to install
common hacking programs on computers on respondent’s computer network. The pro
grams were set up to collect and transmit magnetic stripe data stored on the network to
computers located outside the network every four days, beginning in November 2004.
As a result, the hacker obtained unauthorized access to magnetic stripe data for tens of
millions of credit and debit cards.

“8. In early 2005, issuing banks began discovering several million dollars in fraudu
lent credit and debit card purchases that had been made with counterfeit cards. The
counterfeit cards contained complete and accurate magnetic stripe data, including the
security code used to verify that a card is genuine, and thus appeared genuine in the

* http://www.wired.com/news/technology/0,67980-0.html

† The New York Times, Tuesday, June 21, 2005.

‡ Statement of John M. Perry, President and CEO CardSystems Solutions, Inc., before the United
States House of Representatives Subcommittee on Oversight and Investigations of the Committee
on Financial Services, July 21, 2005.

Saltzer & Kaashoek Ch. 11, p. 147 June 24, 2009 12:29 am

http:wired.com
http://www.wired.com/news/technology/0,67980-0.html

11–148 CHAPTER 11 Information Security

authorization process. The magnetic stripe data matched the information respondent
had stored on its computer network. In response, issuing banks cancelled and re-issued
thousands of credit and debit cards. Consumers holding these cards were unable to use
them to access their credit and bank accounts until they received replacement cards.”*

Visa and American Express cancelled their contracts with CardSystems, and the com
pany is no longer in business.

Lesson: Injection attacks, and the countermeasure of sanitizing the input, have been
recognized and understood for at least 40 years, yet another example is reported nearly
every day. The lesson following anecdote 11.11.1.7 seems to apply here, also.

11.11.13 Hazards of Rarely-Used Components

In the General Electric 645 processor, the circuitry to check read and write permission
was invoked as early in the instruction cycle as possible. When the instruction turned out
to be a request to execute an instruction in another location, the execution of the second
instruction was carried out with timing later in the cycle. Consequently, instead of the
standard circuitry to check read and write permission, a special-case version of the circuit
was used. Although originally designed correctly, a later field change to the processor
accidentally disabled one part of the special-case protection-checking circuitry. Since
instructions to execute other instructions are rarely encountered, the accidental disable
ment was not discovered until a penetration team began a systematic study and found
the problem. The disablement was dependent on the address of both the executed
instruction and its operand, and was therefore unlikely to have ever been noticed by any
one not intentionally looking for security holes.†

Lesson: Most reliability design principles also apply to security: avoid rarely-used
components.

11.11.14 A Thorough System Penetration Job

One particularly thorough system penetration operation went as follows. First, the team
of attackers legitimately obtained computer time at a different site that ran the same
hardware and same operating system. On that system they performed several experi
ments, eventually finding an obscure error in protecting a kernel routine. The error,
which permitted general changing of any kernel-accessible variable, could be used to
modify the current thread’s principal identifier. After perfecting the technique, the team
of attackers shifted their activities to the site where the operating system was being used
for development of the operating system itself. They used the privilege of the new prin
cipal identifier to modify one source program of the operating system. The change was
a one-byte revision—replacing a “less than” test with a “greater than” test, thereby com

* United States Federal Trade Commission Complaint, Case 0523148, Docket C-4168, September
5, 2006.

† Karger and Schell, op. cit., Section 3.2.2.

Saltzer & Kaashoek Ch. 11, p. 148 June 24, 2009 12:29 am

11.11 War Stories: Security System Breaches 11–149

promising a critical kernel security check. Having installed this change in the program,
they covered their trail by changing the directory record of date-last-modified on that
file, thereby leaving behind no traces except for one changed line of code in the source
files of the operating system. The next version of the system to be distributed to custom
ers contained the attacker’s revision, which could then be exploited at the real target site.*

This exploit was carried out by a tiger team that was engaged to discover security slip
ups. To avoid compromising the security of innocent customer sites, after verifying that
the change did allow compromise, the tiger team further modified the change to one that
was not exploitable, but was detectable by someone who knew where to look. They then
waited until the next system release. As expected, the change did appear in that release.†

Lesson: Complete mediation includes verifying the authenticity, integrity, and autho
rization of the software development process, too.

11.11.15 Framing Enigma

Enigma is a family of encipherment machines designed in Poland and Germany in the
1920s and 1930s. An Enigma machine consists of a series of rotors, each with contacts
on both sides, as in Figure 11.12. One can imagine a light bulb attached to each contact
on one side of the rotor. If one touches a battery to a contact on the other side, one of
the light bulbs will turn on, but which one depends on the internal wiring of that rotor.
An Enigma rotor had 26 contacts on each side, thus providing a permutation of 26 let
ters, and the operator had a basket of up to eight such rotors, each wired to produce a
different permutation.

The first step in enciphering was to choose four rotors from the basket [j, k, l and m]
and place them on an axle in that order. This choice was the first component of the
encoding key. The next step was to set each rotor into one of 26 initial rotational posi
tions [a, b, c, d], which constituted the second component of the encoding key. The
third step was to choose one of 26 offsets [e, f, g, h] for a tab on the edge of each rotor.
The offsets were the final component of the encoding key. The Enigma key space was,
in terms of the computational abilities available during World War II, fairly formidable
against brute force attack. After transforming one stream element of the message, the first
rotor would turn clockwise one position, producing a different transformation for the
next stream element. Each time the offset tab of the first rotor completed one revolution,
it would strike a pawl on the second rotor, causing the second rotor to rotate clockwise
by one position, and so on. The four rotors taken together act as a continually changing
substitution cipher in which any letter may transform into any letter, including itself.

The chink in the armor came about with an apparently helpful change, in which a
reflecting rotor was added at one end—in the hope of increasing the difficulty of cryp
tanalysis. With this change, input to and output from the substitution were both done
at the same end of the rotors. This change created a restriction: since the reflector had to

* Schell, 1979 op. cit., page 22.

† Karger and Schell, 1974 op. cit., Sections 3.4.5 and 3.4.6.

Saltzer & Kaashoek Ch. 11, p. 149 June 24, 2009 12:29 am

11–150 CHAPTER 11 Information Security

Enigma Rotor with eight contacts

.

Side view, showing contacts. Edge view, showing some connections.

In

Out

Two Enigma Rotors with a reflector, showing an input-output path.

FIGURE 11.12

Enigma design concept (simplified for illustration).

Saltzer & Kaashoek Ch. 11, p. 150 June 24, 2009 12:29 am

 Exercises 11–151

connect some incoming character position into some other outgoing character position,
no character could ever transform into itself. Thus the letter “E” never encodes into the
letter “E”.

This chink could be exploited as follows. Suppose that the cryptanalyst knew that
every enciphered message began with the plaintext string of characters “The German
High Command sends greetings to its field operations”. Further, suppose that one has
intercepted a long string of enciphered material, not knowing where messages begin and
end. If one placed the known string (of length 60 characters) adjacent to a randomly
selected adjacent set of 60 characters of intercepted ciphertext, there will probably be
some positions where the ciphertext character is the same as the known string character.
If so, the reflecting Enigma restriction guaranteed that this place could not be where that
particular known plaintext was encoded. Thus, the cryptanalyst could simply slide the
known plaintext along the ciphertext until he or she came to a place where no character
matches and be reasonably certain that this ciphertext does correspond to the plaintext.
(For a known or chosen plaintext string of 60 characters, there is a 9/10 probability that
this framing is not a chance occurrence. For 120 characters, the probability rises to
99/100.)

 Being able systematically to frame most messages is a significant step toward breaking
a code because it greatly reduces the number of trials required to discover the key.*

Exercises

11.1 Louis Reasoner has been using a simple RPC protocol that works as follows†:

client ⇒ service: {nonce, procedure, arguments}

service ⇒ client: {nonce, response}

The client sets a timer, and if it does not receive a response before the timer expires,
it restarts the protocol from the beginning, repeating this sequence as many times
as necessary until a response returns. The service maintains a table of nonces and
responses, and when it receives a request containing a duplicate nonce it repeats the
response, rather than repeating execution of the procedure. The client similarly
maintains a list of nonces for which no response has yet been received, and it

* A thorough explanation of the mechanism of Enigma appeared in Alan M. Turing, “A description
of the machine,” (Chapter 1 of an undated typescript, sometimes identified as the Treatise on Enigma
or “the prof ’s book”, c. 1942) [United States National Archives and Records Administration, record
group 457, National Security Agency Historical Collection, box 204, Nr. 964, as reported by Frode
Weierude]. A nontechnical account of the flaws in Enigma and the ways they could be exploited can
be found in Stephen Budianski, Battle of Wits [New York: Simon & Schuster: 2000].

† Throughout the Problems and Solutions, the notation {a, b, c} denotes a message constructed of
the named items, marshaled in some unspecified way that is unimportant for the purposes of the
problem so long as the recipient knows how to unmarshal the individual arguments.

Saltzer & Kaashoek Ch. 11, p. 151 June 24, 2009 12:29 am

11–152 CHAPTER 11 Information Security

discards any responses for nonces not in that list, assuming that they are duplicates.
One possible response is “unknown procedure”, meaning that the service received
a request it didn’t know how to handle. The link layer checksums all frames and
discards any that are damaged in transmission. All messages fit in one frame.

Louis wants to make this protocol secure against eavesdroppers. He has discovered
that the client and the service already share a key, Kcs, for a shared-secret-key
cryptographic system. So the first thing he tries is to encrypt the requests and
responses of the simple RPC protocol:

 client ⇒ service: ENCRYPT ({nonce, procedure, arguments}, Kcs)
 service ⇒ client: ENCRYPT ({nonce, response}, Kcs)

This seems to work, but Louis has heard that if you use the same key to repeatedly
transform predictable fields such as procedure names, someone may eventually
discover the key by cryptanalysis. So he wants to use a different key for each RPC
call. To minimize the coding effort, he changes the protocol to work as follows:

client ⇒ service: ENCRYPT ({Ktn}, Kcs)
client ⇒ service: ENCRYPT ({nonce, procedure, arguments}, Ktn)
service ⇒ client: ENCRYPT ({nonce, response}, Ktn)

in which Ktn is a one-time key chosen by the client to be used only for the n’th RPC
call. When the service receives a key, it decrypts it and uses it until the service gets
another key message. Louis figures that since Kcs is now being used only to
temporary keys, which look like random numbers, it should be safer from
cryptanalysis.

At first, this protocol, too, seems to work. Then Louis notices that the client is
receiving the response “unknown procedure” much more often than it used to.
Explain why, using a timing diagram to demonstrate an example of the failure. And
offer a suggestion to fix the problem.

1983-3-5b

11.2 	 Lucifer is determined to figure out Alice’s password by a brute-force attack. From
watching her log in he knows that her password is eight characters long and all

Saltzer & Kaashoek Ch. 11, p. 152	 June 24, 2009 12:29 am

 Exercises 11–153

lower-case letters, of which there are 26. He sets out to try all possible combinations
of eight lower-case letters.

11.2a. Assuming he has to try about half the possibilities before he runs across the right
one, one trial can be done in one machine cycle, and he has a 600 mHz computer
available, about how long will the project take?

1994–2–1a

11.2b. How long will it take if Alice chooses an eight-character password that includes
upper- and lower-case letters, numbers, and 16 special characters, 78 characters in
all?

1994–2–1b

11.2c. Suppose processors continue to get faster, improving by a factor of three every two
years. How long will it be until Alice’s new password can be cracked as easily as her
old one?

1994–2–1c

11.3 Tracy Swallow has a bright idea for avoiding the need to store passwords securely.
She suggests transforming the user’s name with a key-driven cryptographic
transformation using a systemwide “password key” and giving the result back to the
user to present as a password. A user who wishes to log in simply presents his or her
name and this password; the system can authenticate the user by again transforming
the user’s name with the password key to see if the result is the same as the presented
password. Thus no central file of passwords is needed. What is wrong with Tracy’s
idea?

[1983–2–4b]

11.4 	 Louis Reasoner is fascinated with the discovery that some cryptographic
transformations are commutative. A commutative transformation has the interesting
property that for every message and every pair of keys k1 and k2,

TRANSFORM (TRANSFORM (M, Ka), Kb) = TRANSFORM (TRANSFORM (M, Kb), Ka)

That is, you get the same result no matter in which order you do two
transformations with different keys.

Louis did some further research, identified a high-quality commutative
transformation, and used it to devise a commutative implementation of two
confidentiality primitives he calls ENCRYPT_C and DECRYPT_C. He has proposed that
Alice, in San Francisco, and Bob, in Boston, use the following scheme for secure
private delivery of messages between their computers, which are connected via the
Internet:

• 	 Alice chooses a random key, Ka, encrypts her message M with that key, and sends
the result, ENCRYPT_C (M, Ka), to Bob.

Saltzer & Kaashoek Ch. 11, p. 153	 June 24, 2009 12:29 am

11–154 CHAPTER 11 Information Security

• 	 Bob chooses another random key, Kb, encrypts the already-encrypted message to
produce ENCRYPT_C (ENCRYPT_C (M, Ka), Kb) and sends the doubly-encrypted result
back to Alice.

• 	 By commutativity, this message is identical to ENCRYPT_C (ENCRYPT_C (M, Kb), Ka),
which is a message that Alice can decrypt with her key Ka. She does so, revealing
ENCRYPT_C (M, Kb).

• 	 She sends this result back to Bob, who can now decrypt it with his key Kb to
reveal M.

The appealing thing about this scheme is that Alice and Bob did not have to agree
on a secret key in advance. Louis calls this the “No-Prior-Agreement” protocol.

11.4a. Is it possible for a passive intruder (that is, one who just listens to the encrypted
messages) to discover M? If so, describe how. If not, explain why not.

1994–2–2a

11.4b. Is it possible for an active intruder (that is, one who can also insert, delete, or
replay messages) to discover M? If so, describe how. If not, explain why not.

1994–2–2b

11.5 	 Secure Inc. is developing a remote file system, Secure RFS (SRFS), which
automatically encrypts files to guarantee better privacy of information. When a
request to store a file arrives, SRFS encrypts the file using the client’s key. On arrival
of a request to read a file, SRFS looks up the client key, decrypts the file, and sends
the file back to the client. SRFS keeps for each client a separate key.

11.5a. The designers of Secure Inc. are wondering how long it would take to crack a file
that is encrypted using RSA with a 512-bit key. To crack an RSA-encrypted file one
has to factor the key. The designers found a 1993 paper that reports that factoring
a 100 decimal digit number takes about 1 month using idle cycles from 300 3
MIPS workstations. It is estimated that factoring an additional 3 decimal digits
roughly doubles the computation time needed. How many 3-MIPS computers
would be needed to factor a 155 decimal digit number (which corresponds to about
512 bits) in one month?

1995–2–3a

11.5b. If processors are doubling computation performance per year, how many
workstations would it take to factor a 512-bit key in one month in the year 2001?

1995–2–3b

11.5c. Assume that the cryptographic transformations can be done at 250 kilobytes per
second. How much would the throughput be reduced for reading files stored by
SRFS, if the current maximum throughput without cryptographic transformations

Saltzer & Kaashoek Ch. 11, p. 154	 June 24, 2009 12:29 am

 Exercises 11–155

is 800 kilobytes per second? (Assume that the cryptographic transformations
cannot be pipelined with sending and receiving.)

1995–2–3c

11.5d. Secure Inc. is also considering adding automatic compression of files to SRFS.
Compression reduces redundancy of information in a file so that the file takes less
disk space. Should they first compress files, then encrypt them, or should they first
encrypt files and then compress them? Explain.

1995–2–3d

11.6 	 Alice wants to communicate with Bob over an insecure network. She learned
about one-time pads in Section 11.8, and decides to use a one-time pad to secure
her communications. Since Alice wants to send a k-bit message to Bob in the future,
she generates a random k-bit key r and hands it to Bob in person.
When Alice comes to send Bob her message, she XORs the message m with the key r
to produce a ciphertext c, and sends this on the network. Bob XORs c with r to
retrieve m.

11.6a. 	Assume that Alice’s message m is a concatenation of a header followed by some
data. Consider an eavesdropper Eve who snoops on Alice’s conversation. If Eve can
correctly guess the value of the header in Alice’s message, which of the following are
correct?

A. 	 Eve’s ability to decrypt the data bits in m is not improved by her knowledge of the
header bits.

B. 	 The data bits in Alice’s message are confidential.
C. 	 The data bits in Alice’s message are securely authenticated.

Alice rapidly grows tired of the effort in exchanging one-time pads with Bob, and
has an idea to simplify the key distribution process. Alice’s idea works as follows:

To send a k-bit message m1 to Bob, Alice picks a k-bit random number r1,
computes ciphertext c1 = m1 ⊕ r1, and sends c1 to Bob. Bob then picks his own
k-bit random number r2, computes c2 = c1 ⊕ r2, and sends c2 to Alice. Alice finally
computes c3 = c2 ⊕ r1 and sends c3 to Bob.

 11.6b. Which of the following statements are correct of Alice’s new scheme?

A. 	 Bob can correctly decrypt Alice’s message m1, without receiving r1 ahead of time,
assuming all messages between Alice and Bob are correctly delivered.

B. 	 An active attacker Lucifer (who can intercept, drop, and replay messages) can decrypt
the message.

C. 	 A passive eavesdropper Eve can decrypt the message.
2008-3-12-13

Saltzer & Kaashoek Ch. 11, p. 155	 June 24, 2009 12:29 am

11–156 CHAPTER 11 Information Security

11.7 	 Bank of America is struggling to convince itself of the authenticity of a message it
just received, and has asked your help in what to do next. So far, they know the
following two facts to be true:

• Louis says (Ben says (Transfer $1,000,000 to Alyssa))
• Jim speaks for Ben

Ben’s account has enough money for such a transaction, so if they can convince
themselves that Ben really authorized the transaction, they will do the transfer.
Which of the following things should they attempt to establish the truth of, and
why?]

A. Louis speaks for Jim
B. Ben speaks for Louis
C. 	 Ben says (Jim speaks for Louis)

1995–2–4a

11.8 	 Ben Bitdiddle has hit on a bright idea for fixing the problem that capabilities are
hard to revoke. His plan is to invent something called timed capabilities. One of the
fields of a timed capability is its expiration time, which is the time of creation plus
E. A timed capability can be used like any other capability until the system clock
reaches the expiration time; after that time, it becomes worthless. Analyze this
proposal with respect to:

A. Performance.
B. Propagation.
C. 	 Revocation.
D. 	 Auditing.
E. Ease of use.

1984–2–4

11.9 	 Two banks are developing an inter-bank funds transfer system. They are
connected by a telephone line which runs in a duct along Main street, and Alyssa P.
Hacker is concerned that there might be foul play. The banks' expert, Ben Bitdiddle,
says that the banks will use a shared-secret key K1 to encrypt their communications
and a second shared-secret key K2 to authenticate their communications, using the
following protocol:

Bank 1 ⇒ Bank 2{{“transfer from our Account Y”}K2}K1

Bank 1 ⇒ Bank 2{{“to your Account X”}K2}K1

Bank 1 ⇒ Bank 2{{“Amount Z”}K2}K1

Bank 2 ⇒ Bank 1{{“OK”}K2}K1

Alyssa immediately realizes that without knowing either K1 or K2 an intruder could

Saltzer & Kaashoek Ch. 11, p. 156	 June 24, 2009 12:29 am

 Exercises

subvert the banks.

11.9a. With an Apple II in the manhole in middle of Main street describe how Alyssa
could

A. Increase or decrease the amount of a transfer.
B. Cause a transfer to occur more than once.
C. 	 Cause a transfer not to occur at all without arousing suspicion at the requesting bank.

1984–2–3a

11.9b. Design a new protocol that eliminates these problems and uses only two messages.
1984–2–3b

11.10 	 To attract attention to their Web site, OutofMoney.com has added a feature that
broadcasts a stream of messages containing free stock market quotations. They
intend the information to be public, so there is no need for confidentiality, but they
are concerned about their reputation, so they want the stream of data to be
authenticated.

Their current implementation signs every message with the company's private key,
and clients authenticate the data by verifying it with the company's widely
publicized public key. This technique works, but is proving problematic because the
public-key algorithm uses too much computation time and the typical client,
running a four-year-old pentium processor, can't keep up with the stream of
messages on days when the stock market is crashing.
From reading this chapter, they learned that authentication using a shared-secret
key MAC is much faster. They have hired Ben Bitdiddle and Louis Reasoner as a
consulting team to put this idea into practice. (Unfortunately, they didn't do any
of the problem sets, so they don't know about the reputations of these two
characters.)

Louis's first proposal is as follows: any client who wishes to use the authenticated
service starts by contacting the service and requesting a start message. The service
signs this start message with the company's public key. The start message contains
the shared-secret key that is currently being used to authenticate the stream of
messages containing the stock market quotations.

11.10a. Ben's intuition is that this can't possibly work, but he isn't sure why. Give Ben
some help by explaining why.

2002–0–1

Undaunted, Louis has been reading about delayed authentication and decides it is
the ideal way to tackle this problem. The idea is the following: since the service is
sending a stream of messages, for each message use a different shared-secret key to
create its authentication tag, and then publicly disclose that shared-secret key after

11–157

Saltzer & Kaashoek Ch. 11, p. 157	 June 24, 2009 12:29 am

11–158 CHAPTER 11 Information Security

all clients have received that message.

In Louis’s design, each message Pi is constructed as follows:

raw_messagei ← {i, Di, Ki-2}
authtagi ← SIGN (raw_messagei, Ki)
Pi ← {raw_messagei, authtagi}

Thus Pi contains

• its own sequence number, i
• some data, Di
• the key Ki-2, which can be used to verify the data in message Pi-2
• an authentication tag created by signing the rest of the message with Ki

The key that authenticates this message will appear in message Pi+2. Louis argues
that even though the key Ki is sent in plaintext, if the client receives Di before the
service sends Ki, by the time the attacker knows Ki, it is too late for the attacker to
modify Di. As with Louis's previous system, a client begins by requesting a start
message. This time, the start message contains the same data as the next message in
the broadcast stream, but it is signed with the company's private key.

11.10b. 	Again, Ben is (rightly) suspicious of this system, but he can't figure out what is
wrong with it. Help him out by explaining the flaw and how to fix it.

2002–0–2

11.11 	 This chapter discusses both capabilities and access control lists as mechanisms for
authorization. Which of the following statements are true?

A. 	 A capability system associates a list of object references with each principal,
indicating which objects the principal is allowed to use.

B. 	 An access control list system associates a list of principals with each object, indicating
which principals are allowed to use the object.

C. 	 Revocation of a particular access permission of a principal is more difficult in an
access control list system than in a capability system.

D. 	 Protection in the UNIX file system is based on capabilities only.
2002–2–04

11.12 	 Alice decided to try out a new RFID Student Tracking System, so she created an
access control list that allows a few close friends to track her. One of those friends,
Bob, wants to ask Alice to join his design project team, so this morning he requested
that the tracking system give him a callback if Alice walks by the Administration
building. Alice, working in a nearby laboratory, belatedly realizes that Bob is
probably going to pop that question, so she logs in to the tracking system and
removes Bob from her access control list. She then logs out and leaves for lunch. As

Saltzer & Kaashoek Ch. 11, p. 158	 June 24, 2009 12:29 am

 Exercises 11–159

she walks by the Administration building, Bob comes running out of the library to
greet her, saying that he just received a callback from the tracking system.

The designer of the tracking system made a security blunder. Which of the
following is the most likely explanation?

A. 	 The tracking system didn’t properly erase residues.
B. 	 In her rush to leave for lunch, Alice removed Lucy, rather than Bob, from her ACL.
C. 	 The tracking system has a time-of-check to time-of-use bug.
D. 	 The system used a version of SSL that is subject to cipher substitution attacks.
E. 	 The system did not require a face-to-face rendezvous between users and system

administrator.
2003–3–5

11.13 	 Ben decides to start an Internet Service Provider. He buys an address space that
contains 224 addresses (out of the total of 232 in the Internet) that have never been
used before. A few days after he buys this address space, someone launches a new
worm similar in design to the Slammer worm described in Section 11.11.4.3. The
new worm targets a buffer overflow in the FOO server, which listens on UDP port
5044. Ben monitors all traffic sent to his part of the Internet address space on port
5044 and plots the number of worm probes versus time below:

Time

10,000

probes/sec

100
probes/sec

0

Assume the worm spreads by probing IP addresses chosen at random, and that its
pseudorandom number generator is bug-free and generates a complete permutation
of the integers before revisiting any integer. Ben learns from a security analyst that
each infected machine sends 100 probes/second.

 11.13a. Give an estimate of the total number of machines that run the FOO server.

A. 	 100 machines
B. 	 7.2×1018 machines
C. 	 25,600 machines
D. 	 8,000 machines

Saltzer & Kaashoek Ch. 11, p. 159	 June 24, 2009 12:29 am

11–160 CHAPTER 11 Information Security

11.13b. Ben thinks that the worm used a hit list of vulnerable addresses (i.e., addresses of
FOO servers). Do you agree? If you do, what is the best estimate for the number of
machines contained in the hit list?

A. no hit list
B. 100 machines
C. 	 256 machines
D. 	 25600 machines
E. 	 80 machines

2007-3-3-4

11.14 	 Ben Bitdiddle, the new head of Cyber Security for the Department of Homeland
Security, studied the war story about the Slammer worm in Section 11.11.4.3 and
he wants to build a system that will detect and stop future worm attacks before they
can reach 50% of the vulnerable hosts. Ben makes the following assumptions about
the worms to be defended against:

• 	 Each worm instance sends 512 (29) probes per second.
• 	 The worm’s software probes all IP addresses at random.
• 	 Of the 232 possible addresses on the Internet, there are 32,768 (215) that are

attached to active hosts that are vulnerable to the worm.
• 	 The worm begins by infecting a single vulnerable host.

11.14a. Given the assumptions above, roughly how many seconds will it take for the size
of the infected population to double, during the early stages of a worm outbreak?\

A. 16 seconds
B. 256 seconds
C. 	 1024 seconds

Ben convinces a consortium of router vendors to develop a new, remotely
configurable packet-filtering feature, and develops a system that can propagate filter
updates to all routers in the Internet within 15 minutes (900 seconds) of a detected
outbreak. Once all routers have the filter, the filters will prevent all further worm
infections. Ben’s detection mechanism is a network monitor that can observe
1/256-th of the Internet address space. His system automatically sends a filter
update whenever worm traffic directed to the set of addresses he monitors reaches
a predefined threshold.

11.14b. 	What traffic threshold should Ben choose to stop the worm before it reaches 50%
of the vulnerable hosts?

Saltzer & Kaashoek Ch. 11, p. 160	 June 24, 2009 12:29 am

 Exercises 11–161

A. 10 worm probes/second
B. 100 worm probes/second
C. 	 1000 worm probes/second
D. 	 10000 worm probes/second
E. 100000 worm probes/second

2008-3-6-7

11.15 	 Ben Bitdiddle visits the Web site amazing.com and obtains a fresh page signed
with a private key. Which of these methods of obtaining the certificate for the
server's public key can assure Ben that the private key used for the page's signature
indeed belongs to the organization that owns the domain amazing.com? (Assume
that the certificate is signed by a trusted certificate authority and is valid.)

A. Using HTTP Ben downloads the certificate from http://amazing6033.com.
B. Using HTTP Ben downloads the certificate from the certificate authority.
C. 	 Ben finds the certificate by doing a Web search on Google.
D. 	 Ben gets the certificate in e-mail from a spammer.

11.16 	 Ben Bitdiddle and Louis Reasoner have founded a startup company, named
Public Key Publication, Inc. (PKPI), whose business is distributing public keys.
Their idea is that people who have a key pair for use with a public-key system need
a way of letting other people know the public key of their key pair. Ben and Louis
are not interested in creating keys, but just in acting as a public key distributor.

Ben and Louis have designed the following protocol, in which Alice sends a private
message to Bob. They need your help in debugging the protocol. KPxyz

is the public
key of principal xyz.

Alice	 PKPI Bob

Message 1

Message 2

Message 3

What is Bob’s public key?

KPBob

ENCRYPT (M, KPBob)

Messages 1 and 2 constitute the PKPI protocol; message 3 is the beginning of Alice’s
protocol with Bob and is not under the control of PKPI; message 3 is shown here

Saltzer & Kaashoek Ch. 11, p. 161	 June 24, 2009 12:29 am

http://amazing6033.com

11–162 CHAPTER 11 Information Security

only to place the PKPI protocol in context.

11.16a. Louis believes that Eve, the passive eavesdropper, will find that she cannot learn
anything by overhearing the PKPI protocol in use. Give an argument that supports
Louis’ position, or an example demonstrating that Louis is mistaken.

11.16b. Louis originally hoped that Lucifer, the active attacker, wouldn’t be able to cause
any problems, either, but since reading this chapter he is not sure. Give an example
of an active attack that demonstrates that Louis needs to revise the PKPI protocol
to protect against Lucifer.

11.16c. Ben suggests that the protocol could be improved by changing Message 2. What
changes should be made so that Alice can be confident that no one but Bob can
decrypt message 3?

1995–2–5a…c

11.17 	 Louis Reasoner’s cousin Norris has discovered the following interesting fact, and
would like to put it to use:

• 	 Interesting fact: 2150 proton-sized objects will compactly fill the known
universe.

Since nonces are used in so many different applications, Norris proposes to create
the Norris Nonce Service for use by everyone. If you send a request to Norris’s
service it will return the next 200-bit integer, in increasing order, for use as a nonce.
(Norris chose 200 in case the size of the universe turns out to have been
underestimated.) What are some of the things that make this proposal harder to do
than Norris probably suspects?

1983–3–3

Additional exercises relating to Chapter 11 can be found in problem sets 43–49.

Saltzer & Kaashoek Ch. 11, p. 162	 June 24, 2009 12:29 am

CHAPTERGlossary for Chapter 11

access control list (ACL)—A list of principals authorized to have access to some object.
[Ch. 11]

adversary—An entity that intentionally tries to defeat the security measures of a computer
system. The entity may be malicious, out for profit, or just a hacker. A friendly adversary
is one that tests the security of a computer system. [Ch. 11]

authentication—Verifying the identity of a principal or the authenticity of a message. [Ch.
 11]

authentication tag—A cryptographically computed string, associated with a message, that
allows a receiver to verify the authenticity of the message. [Ch. 11]

authorization—A decision made by an authority to grant a principal permission to
perform some operation, such as reading certain information. [Ch. 11]

capability—In a computer system, an unforgeable ticket, which when presented is taken
as incontestable proof that the presenter is authorized to have access to the object named
in the ticket. [Ch. 11]

certificate—A message that attests the binding of a principal identifier to a cryptographic
key. [Ch. 11]

certificate authority (CA)—A principal that issues and signs certificates. [Ch. 11]

certify—To check the accuracy, correctness, and completeness of a security mechanism.
[Ch. 11]

cipher—Synonym for a cryptographic transformation. [Ch. 11]

ciphertext—The result of encryption. Compare with plaintext. [Ch. 11]

cleartext—Synonym for plaintext. [Ch. 11]

close-to-open consistency—A consistency model for file operations. When a thread opens
a file and performs several write operations, all of the modifications weill be visible to
concurrent threads only after the first thread closes the file. [Ch. 4]

coheerence—See read/write coherence or cache coherence.

confidentiality—Limiting information access to authorized principals. Secrecy is a
synonym. [Ch. 11]

confinement—Allowing a potentially untrusted program to have access to data, while
ensuring that the program cannot release information. [Ch. 11]

covert channel—In a flow-control security system, a way of leaking information into or
out of a secure area. For example, a program with access to a secret might touch several
shared but normally unused virtual memory pages in a pattern to bring them into real
memory; a conspirator outside the secure area may be able to detect the pattern by
measuring the time required to read those same shared pages. [Ch. 11] 11–163

Saltzer & Kaashoek Ch. 11, p. 163 June 24, 2009 12:29 am

11–164 Glossary for Chapter 11

cryptographic hash function—A cryptographic function that maps messages to short
values in such a way that it is difficult to (1) reconstruct a message from its hash value;
and (2) construct two different messages having the same value. [Ch. 11]

cryptographic key—The easily changeable component of a key-driven cryptographic
transformation. A cryptographic key is a string of bits. The bits may be generated
randomly, or they may be a transformed version of a password. The cryptographic key,
or at least part of it, usually must be kept secret, while all other components of the
transformation can be made public. [Ch. 11]

cryptographic transformation—Mathematical transformation used as a building block
for implementing security primitives. Such building blocks include functions for
implementing encryption and decryption, creating and verifying authentication tags,
cryptographic hashes, and pseudorandom number generators. [Ch. 11]

cryptography—A discipline of theoretical computer science that specializes in the study of
cryptographic transformations and protocols. [Ch. 11]

data integrity—Authenticity of the apparent content of a message or file. [Ch. 11]

decrypt—To perform a reverse cryptographic transformation on a previously encrypted
message to obtain the plaintext. Compare with encrypt. [Ch. 11]

digital signature—An authentication tag computed with public-key cryptography. [Ch.
 11]

discretionary access control—A property of an access control system. In a discretionary
access control system, the owner of an object has the authority to decide which principals
have access to that object. Compare with non-discretionary access control. [Ch. 11]

encrypt—To perform a cryptographic transformation on a message with the objective of
achieving confidentiality. The cryptographic transformation is usually key-driven.
Compare with the inverse operation, decrypt, which can recover the original message.
[Ch. 11]

explicitness—A property of a message in a security protocol: if a message is explicit, then
the message contains all the information necessary for a receiver to reliably determine
that the message is part of a particular run of the protocol with a specific function and
set of participants. [Ch. 11]

flow control—In security, a system that allows untrusted programs to work with sensitive
data but confines all program outputs to prevent unauthorized disclosure. [Ch. 11]

forward secrecy—A property of a security protocol. A protocol has forward secrecy if
information, such as an encryption key, deduced from a previous transcript doesn’t allow
an adversary to decrypt future messages. [Ch. 11]

freshness—A property of a message in a security protocol: if the message is fresh, it is
assured not to be a replay. [Ch. 11]

key-based cryptographic transformation—A cryptographic transformation for which
successfully meeting the cryptographic goals depends on the secrecy of some component

Saltzer & Kaashoek Ch. 11, p. 164 June 24, 2009 12:29 am

Glossary for Chapter 11 11–165

of the transformation. That component is called a cryptographic key, and a usual design
is to make that key a small, modular, separable, and easily changeable component. [Ch.
 11]

key distribution center (KDC)—A principal that authenticates other principals to one
another and also provides one or more temporary cryptographic keys for communication
between other principals. [Ch. 11]

list system—A design for an access control mechanism in which each protected object is
associated with a list of authorized principals. [Ch. 11]

mediation—Before a service performs a requested operation, determining which principal
is associated with the request and whether the principal is authorized to request the
operation. [Ch. 11]

message authentication—The verification of the integrity of the origin and the data of a
message. [Ch. 11]

message authentication code (MAC)—An authentication tag computed with shared-
secret cryptography. MAC is sometimes used as a verb in security jargon, as in “Just to
be careful, let’s MAC the address field of that message.” [Ch. 11]

name-to-key binding—A binding between a principal identifier and a cryptographic key.
[Ch. 11]

non-discretionary access control—A property of an access control system. In a non
discretionary access control system, some principal other than the owner has the
authority to decide which principals have to access the object. Compare with
discretionary access control. [Ch. 11]

origin authenticity—Authenticity of the claimed origin of a message. Compare with data
integrity. [Ch. 11]

page fault—See missing-page exception.

pair-and-spare—See pair-and-compare.

password—A secret character string used to authenticate the claimed identity of an
individual. [Ch. 11]

plaintext—The result of decryption. Also sometimes used to describe data that has not
been encrypted, as in “The mistake was sending that message as plaintext.” Compare
with ciphertext. [Ch. 11]

prepaging—An optimization for a multilevel memory manager in which the manager
predicts which pages might be needed and brings them into the primary memory before
the application demands them. Compare with demand algorithm.

presented load—See offered load.

principal—The representation inside a computer system of an agent (a person, a computer,
a thread) that makes requests to the security system. A principal is the entity in a
computer system to which authorizations are granted; thus, it is the unit of
accountability and responsibility in a computer system. [Ch. 11]

Saltzer & Kaashoek Ch. 11, p. 165 June 24, 2009 12:29 am

11–166 Glossary for Chapter 11

privacy—A socially defined ability of an individual (or organization) to determine if, when,
and to whom personal (or organizational) information is to be released and also what
limitations should apply to use of released information. [Ch. 11]

private key—In public-key cryptography, the cryptographic key that must be kept secret.
Compare with public key. [Ch. 11]

protection—1. Synonym for security. 2. Sometimes used in a narrower sense to denote
mechanisms and techniques that control the access of executing programs to
information. [Ch. 11]

protection group—A principal that is shared by more than one user. [Ch. 11]

public key—In public-key cryptography, the key that can be published (i.e., the one that
doesn’t have to be kept secret). Compare with private key. [Ch. 11]

public-key cryptography—A key-based cryptographic transformation that can provide
both confidentiality and authenticity of messages without the need to share a secret
between sender and recipient. Public-key systems use two cryptographic keys, one of
which must be kept secret but does not need to be shared. [Ch. 11]

repudiate—To disown an apparently authenticated message. [Ch. 11]

secrecy—Synonym for confidentiality. [Ch. 11]

secure area—A physical space or a virtual address space in which confidential information
can be safely confined. [Ch. 11]

secure channel—A communication channel that can safely send information from one
secure area to another. The channel may provide confidentiality or authenticity or, more
commonly, both. [Ch. 11]

security—The protection of information and information systems against unauthorized
access or modification of information, whether in storage, processing, or transit, and
against denial of service to authorized users. [Ch. 11]

security protocol—A message protocol designed to achieve some security objective (e.g.,
authenticating a sender). Designers of security protocols must assume that some of the
communicating parties are adversaries. [Ch. 11]

shared-secret cryptography—A key-based cryptographic transformation in which the
cryptographic key for transforming can be easily determined from the key for the reverse
transformation, and vice versa. In most shared-secret systems, the keys for a
transformation and its reverse transformation are identical. [Ch. 11]

shared-secret key—The key used by a shared-secret cryptography system. [Ch. 11]

sign—To generate an authentication tag by transforming a message so that a receiver can
use the tag to verify that the message is authentic. The word “sign” is usually restricted
to public-key authentication systems. The corresponding description for shared-secret
authentication systems is “generate a MAC”. [Ch. 11]

speaks for—A phrase used to express delegation relationships between principals. “A speaks
for B” means that B has delegated some authority to A. [Ch. 11]

Saltzer & Kaashoek Ch. 11, p. 166 June 24, 2009 12:29 am

Glossary for Chapter 11 11–167

threat—A potential security violation from either a planned attack by an adversary or an
unintended mistake by a legitimate user. [Ch. 11]

ticket system—A security system in which each principal maintains a list of capabilities,
one for each object to which the principal is authorized to have access. [Ch. 11]

trusted computing base (TCB)—That part of a system that must work properly to make
the overall system secure. [Ch. 11]

Saltzer & Kaashoek Ch. 11, p. 167 June 24, 2009 12:29 am

11–168 Glossary for Chapter 11

Saltzer & Kaashoek Ch. 11, p. 168 June 24, 2009 12:29 am

CHAPTERIndex of Chapter 11

Design principles and hints appear in underlined italics. Procedure names appear in SMALL

CAPS. Page numbers in bold face are in the chapter Glossary.

A
access control list 11–74, 11–163
ACL (see access control list)
adopt sweeping simplifications 11–16
Advanced Encryption Standard (AES)

 11–103
adversary 11–6, 11–163
authentication 11–20, 11–163

key 11–41

logic 11–86

origin 11–37, 11–165

tag 11–41, 11–163

authorization 11–21, 11–73, 11–163
matrix 11–73

avoid rarely used components 11–148

B
be explicit 11–4, 11–10, 11–24, 11–26,

11–53, 11–55, 11–61, 11–67, 11–68
block

cipher 11–103
bot 11–19
buffer overrun attack 11–22, 11–23

C
CA (see certificate authority)
capability 11–74, 11–163
cascading change propagation 11–105
CBC (see cipher-block chaining)
certificate 11–56, 11–163

authority 11–56, 11–163
self-signed 11–92

certify 11–11, 11–163
cipher 11–99, 11–163
cipher-block chaining 11–105
ciphertext 11–49, 11–163

cleartext 11–38, 11–163
close-to-open consistency 11–163
collision

hash 11–33
commutative cryptographic transformation

 11–153
compartment 11–81
complete mediation 11–5, 11–15, 11–18,

11–25, 11–136
computationally secure 11–33
confidentiality 11–49, 11–163
confinement 11–82, 11–163
consistency

close-to-open 11–163
cookie 11–124
covert channel 11–84, 11–163
cryptographic

hash function 11–32, 11–164

key 11–39, 11–164

transformation 11–39, 11–99, 11–164

transformation, commutative 11–153

cryptography 11–22, 11–164
public key 11–40, 11–166
shared-secret 11–40, 11–166

D
data integrity

in security assurance 11–36, 11–164
declassify 11–84
decrypt 11–49, 11–164
DECRYPT 11–49
defense in depth 11–12
delayed authentication 11–157
design for iteration 11–4, 11–10, 11–26
design principles

adopt sweeping simplifications 11–16
11–169

Saltzer & Kaashoek Ch. 11, p. 169 June 24, 2009 12:29 am

Index of Chapter

11–170

avoid rarely used components 11–148
be explicit 11–4, 11–10, 11–24, 11–26,

11–53, 11–55, 11–61, 11–67,
11–68

complete mediation 11–5, 11–15, 11–18,
11–25, 11–136

design for iteration 11–4, 11–10, 11–26
economy of mechanism 11–16, 11–26
end-to-end argument 11–16
fail-safe defaults 11–16, 11–24, 11–126
keep digging principle 11–126
least privilege principle 11–17, 11–24,

11–39, 11–79, 11–80, 11–81,
11–130

minimize common mechanism 11–16,
11–141

minimize secrets 11–15, 11–34, 11–39
open design principle 11–13, 11–39,

11–64, 11–140
principle of least astonishment 11–15,

11–138
dictionary attack 11–34
digital signature 11–44, 11–164
discretionary access control 11–74, 11–81,

11–164

E
economy of mechanism 11–16, 11–26
encrypt 11–49, 11–164
ENCRYPT 11–49
encryption key 11–49
end-to-end argument 11–16
explicitness 11–61, 11–164

F
fail-safe defaults 11–16, 11–24, 11–126
flow control 11–164
forward

secrecy 11–61, 11–164
freshness 11–61, 11–164

H
hashed MAC 11–107
hints

separate mechanism from policy 11–7,
11–84

HMAC (see hashed MAC)

I
information flow control 11–83

K
KDC (see key distribution center)
keep digging principle 11–126
key (see cryptographic key)
key distribution center 11–57, 11–165
key-based cryptographic transformation

 11–41, 11–164

L
least astonishment principle 11–15, 11–138
least privilege principle 11–17, 11–24,

11–39, 11–79, 11–80, 11–81,
11–130

limited change propagation 11–100
list system 11–74, 11–165

M
MAC

(see message authentication code)
malware 11–19
mediation 11–73, 11–165
message

authentication 11–36, 11–165
authentication code 11–44, 11–165

minimize common mechanism 11–16,
11–141

minimize secrets 11–15, 11–34, 11–39

N
name-to-key binding 11–45, 11–165
non-discretionary access control 11–74,

11–81, 11–165

O
one-time pad 11–99
open design principle 11–13, 11–39, 11–64,

11–140

Saltzer & Kaashoek Ch. 11, p. 170 June 24, 2009 12:29 am

Index of Chapter

11–171

origin authenticity 11–37, 11–165

P
password 11–31, 11–165
PGP (see protocol, pretty good privacy)
PKI (see public key infrastructure)
plaintext 11–38, 11–49, 11–165
prepaging 11–165
principal 11–20, 11–165
principle of least astonishment 11–15, 11–138
privacy 11–6, 11–166
private key 11–40, 11–166
protection 11–6, 11–166

group 11–76, 11–166
protocol

challenge-response 11–64
Diffie-Hellman key agreement 11–68
Kerberos 11–58
pretty good privacy 11–98
secure shell 11–46
secure socket layer 11–117
security 11–36, 11–54, 11–166
transport layer security 11–116

pseudorandom number generator 11–101
public key 11–40, 11–166

cryptography 11–40, 11–166
infrastructure 11–93, 11–114

R
random

number generator 11–99
pseudorandom number generator 11–101

RC4 cipher 11–101
reference

monitor 11–20
repudiate 11–166
revocation 11–73
Rivest, Shamir, and Adleman cipher 11–109
RSA (see Rivest, Shamir, and Adleman cipher)

S
safety net approach 11–10

secrecy 11–166
secure area 11–166
secure channel 11–22, 11–116, 11–166
Secure Socket Layer 11–117
security 11–6, 11–166

protocol 11–36, 11–54, 11–166
seed 11–101
separate mechanism from policy 11–7, 11–84
shared-secret

cryptography 11–40, 11–166
key 11–40, 11–166

sign 11–41, 11–166
speaks for 11–85, 11–166
SSH (see protocol, secure shell)
SSL (see Secure Socket Layer)
stream

cipher 11–99

T
TCB (see trusted computing base)
threat 11–7, 11–167

insider 11–8
ticket system 11–74, 11–167
tiger team 11–27
timed capability 11–156
TLS (see Transport Layer Security)
Transport Layer Security 11–116
trusted

computing base 11–26, 11–167

V
verify 11–41
virus 11–19

W
window

of validity 11–33
witness 11–48
work factor 11–33
worm 11–19

Saltzer & Kaashoek Ch. 11, p. 171 June 24, 2009 12:29 am

Index of Chapter

11–172

Saltzer & Kaashoek Ch. 11, p. 172 June 24, 2009 12:29 am

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

